
A-A191 396 REDUCTION OF FLOWI DIAGRAMS TO UNFOLDED FORM MODULO 1/1
SNARLS(U) YLYK LTD RNN ARBOR MI S R SLAKLEY 14 APR 87
RFOSR-TR-87-0789 F49629-96-C-6103

UNCLASSIFIED F/S 12/4 NI.

mhEEEEEmhEmhh

moEll~~hE

ha -

L, M-0

MICROCOPY RESOLUTION TEST CHART
NATIOWA BURM OF STAIEOAAO-1*3.A

* W -W ;MW- A-.oo-' uqw vo w m

unclassified
5EIUU511FSICATIO4 OF IWIS PAGEI REPORTDqCIJMENTATIONPAGE

Is. REPOR SECUR CASIIATION 1 (b. RESTRICTIVE MARKINGSI unclassified JI IC -none
~ 39O 3. DISTRIBUTION/I AVAILABILITY OF REPORT

AD A18 9 Approved for public release;
Distribution Unlimited

4, PF MING ORGANIZATION- NUMBER(S) 5.MONITORING ORGSANIZATION REPORT NUMBER(S)

F4962086C01030'41487 %DAFOSR.Th. 8 7 078 11
Go. NAME OF PERFORMING ORGANIZATION 6Gb. OFFICE SYMBO' 78. NAME OF MONITORING ORGANIZATION

YLYK, Ltd. faliae)-

6c. ADDRESS (City, Stat, and ZIP Code) 7b. ADRESS (011y, Stae and ZIP6#'
2440 Stone O'1
Ann Arbor, MI 48105 l~.

Um NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL '9. PRO(CUREMMJ INr10Oi 1111NTIFICATION NUMBER
ORGANIZATION 7fapplicabl F-49620-86-C-0103

USAF,AFSC,AFOSR I__________M_________
8L. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

ArOSS/t PROGRAM IPROJECT ITASK I WORK UNIT
Bids 410 ELEMENT NO0 NO. 1 NO. A CESSION NO.

113TTL 11lia AnDIC 20332-8446 0,Q 41OL3 q4
1.TTE(Include Security OaSSification)

Final Report On "Reduction of Flow Diagrams to Unfolded Form
Modulo Snarls" (unclassified)

12. PERSONAL AUTHOR(S)
Blakley, George Robert (Bob) III

13a. TYPE OF REPORT I13b. TIME COVERED 14. DATE OF REPORT MYar, Month, Day) SI . PAGE COUNT
final I FROM15Se86 TO 14Feb;f 14 Apr. 87 c

16. SUPPLEMENTARY NOTATION

17. COSATI CODES I18. SUBJECT TERMS (Continue on reverse if necessary and identif~y by block number)
FIELD IGROUP SUB-GROUP Graphs, GOTO, Structured Programming, Plane

Embeddings, Flow Diagrams, Snarls, Object-Oriented
I I iProgramming, Non-Von Neumann Architectures

19. ABSTRACT (Continue on reverse if necessary and identify, by block number)
his research effort produced five low-degree polynomial time algorithms
for turning a complete but merely local description of a flow diagram or
a graph into a standardized drawing of the entirety of that flow diagram
(or graph). The most remarkable feature of these five algorithms is that
all of them overcome the problem of scale. This means that the representations
they produce have the property that the operation boxes and flow paths (or
vertices and edges) are drawn with a uniform spacing which exhibits neither
crowding nor excessive white, space. Every output of every one of them is very
readable. The most important of them produces a plane, straight-line draw-
ing, without crossovers, of any planar graph. The drawing can be performed in
anatural and uncrowded manner on a 3v by 2v piece of graph paper, where v is.

the number of vertices in the graph. The research relates these graph-
representation problems to fundamental problems in structured programming,

espei1ll thp rnlp nf and' Rl tho iia e-f .nnn-mra+-4ug p~riiJmcz-.
20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION4

UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 0QOTIC USERS j unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
Dr. Arie Nachman (202) 767-5028No

DO FORM 1473.84 MAR 63 APR edition may be used until exhausted. SEC &:ASIICTION. OF THIS PAGE
All other editions are obsolete. U .i

FINAL REPORT ON

"REDUCTION OF FLOW DIAGRAMS TO UNFOLDED FORM

MODULO SNARLSO

,~s~mm 87-n0789

Accesion For

NTIS CRA&I
DTIC TAB 0*1
Unannounced 0i l
Justification0"

By.....

Dist: ibutio.if

Availability Codes

Dist IAvail ai.d/or

Spucial

87 6 10 2!96

1.0 Table of Contents

1.0 Table of Contents

2.0 Introduction

2.1 Project Overview
2.2 Objectives
2.3 Status of Research Effort
2.4 Publications
2.5 Personnel
2.6 Interactions

3.0 Definitions of Graph-Theoretic Terms

3.1 Simple Graph
3.2 Graph
3.3 Connected Graph
3.4 Biconnected Graph
3.5 Complete Graph
3.6 Bipartite Graph
3.7 Complete Bipartite Graph
3.8 Digraph
3.9 Planar Graph
3.10 Plane Imbedding

4.0 History I: Determining Graph Planarity

4.1 The Problem
4.2 Early Algorithms

4.2.1 Euler's Formula
4.2.2 Kuratowski IV(G)I**6 Algorithm

4.3 Linear Time Algorithms
4.3.1 Lempel-Even-Cederbaum Vertex Addition Algorithm
4.3.2 Hopcroft-Tarjan Path Addition Algorithm

5.0 History II: Plane Imbeddings of Planar Graphs

5.1 The Problem
5.2 The Chiba-Nishizeki-Abe-Ozawa Linear Time Algorithm
5.3 The Hopcroft-Tarjan Linear Time Algorithm
5.4 Wagner and Fary on Straight-Line Imbeddings
5.5 Duchet, et. al. on Straight-Line Imbeddings
5.6 The Ullman "<- IV(G) **((log IV(G)I)**2)"

Space Algorithm

1

6.0 The Jailcell (2jc) Representation of Plane Graphs

6.1 Description
6.2 The Jailcell Algorithm
6.3 Time and Space Complexity Considerations

6.3.1 O-Notation
6.3.2 Space Complexity of Jailcell Representation
6.3.3 Worst-Case Time Complexity of 2JC Algorithm

7.0 Snarls

8.0 Naive Representations of Nonplanar Graphs

8.1 Terminology for YLYK, Ltd.'s Graph Imbeddiny
Algorithms

8.2 The 2-Level Crossbar Pole (3cp) Representation of
Nonplanar Graphs

8.3 The Multilevel Starbody Pole (3msp)
Representation of Nonplanar Graphs

8.4 The Multilevel Convex body Pole Representation
8.5 The Basketweave (2.5b) Representation of Nonplanar

Graphs

9.0 Advantages of YLYK, Ltd. Graph Representations

10.0 Better Languages for Nonplanar Algorithms

10.1 Object-Oriented Languages

11.0 What are Nonplanar Algorithms Good For?

12.0 Appendix A: The Objectives of the Reported Research
Effort

13.0 Appendix B: Two Versions of Zensort in Basic

14.0 Appendix C: A Version of Zensort in Smalltalk

15.0 Appendix D: An Example of the Operation of the
Jailcell Algorithm

16.0 Appendix E: The Technical Portion of the Proposal
Which Led to This Contract

17.0 Bibliography

2

2.0 Introduction

2.1 Project Overview

The purpose of the Phase 1 research done on Contract
F49620-86-C-0103 between Air Force and YLYK Ltd., and
reported here, is to make flow diagrams more useful and
comprehensible. The idea is to automate the process of
drawing them to produce readable standardized objects in 2
or "2.5" dimensions (on paper) or in 3 dimensions. The
fact that 3 dimensions can be required (so that a drawing
on a single sheet of paper must contain at least one
crossover) might seem to contradict the fundamental tenets
of structured programming. But, as noted in YLYK Ltd.'s
proposal leading to the Phase I work just completed, this is
not the case. See pages 3-9 of Appendix E. See also [RU87],
which raises an interesting objection to these tenets. In
this Phase 1 SBIR contract, YLYK Ltd. has produced three
kinds of algorithms:

1.) A "2-dimensional" algorithm (the 2jc algorithm described
below) for taking a planar (i.e. imbeddable in the plane)
graph and drawing it in "jailcell" fashion. This means that
each edge is represented by a vertical (i.e. perpendicular
to the X-axis) line segment, and each vertex (node) is
represented by a "brick", namely a rectangle with short
vertical edges and long horizontal (i.e. parallel to the
X-axis) edges. An unexpected bonus, accruing to those who
draw graphs (and hence to those who draw flow diagrams) with
the jailcell algorithm, is that the "problem of scale"
[EV79, p.171) disappears. This problem, which plagued
people trying to do geometric (as opposed to Hopcroft-Tarjan
and other merely topological) imbeddings, is that lots of
vertices get jammed together when the graph is finally
drawn. Users of previous geometric imbedding algorithms,
therefore, needed a huge sheet of paper, and most of it was
blank, but one or more small parts of it were packed with a
fine tracery of vertices and edges.

2.) Three "3-dimensional" algorithms (the 3cp, 3msp, and
3mcp algorithms described below) for representing a general
(i.e. not necessarily planar) graph in XYZ-space so that
each vertex is a simple looking area in a level (i.e.
parallel to the XY-plane) plane and each edge is an upright
(i.e. perpendicular to the XY-plane) line segment. The
output of each of these three algorithms resembles the
skeleton of a skyscraper, in that the vertices are variously

3

shaped level floors ("terraces") and the edges are upright
beams ('poles') joining floors. Neither of these algorithms
suffers from the problem of scale, but this is not as
surprising in 3 dimensions as it was in 2.

3.) A "2.5 dimensional" algorithm (the 2.5b algorithm
described below) for making a planar drawing of a nonplanar
graph. In this kind of drawing there is a jailcell
configuration as in section 1. above, except that some
vertex parallelograms lie above (cross over) parts parts of
some. edge segments. So all crossovers in all such drawings
of flow diagrams are of the form

m

Do Something

m

A box (or rectangle) like the above, which is wider than it
is high, will be called a brick. See 1.) above. The 2.5b
algorithm does not suffer from the problem of scale. At this
point it is clear that no flow chart for any process
whatever, and certainly no flow diagram for any proposed
software, has to be drawn in the confused baroque fashion of
the example on page 11 of Appendix E. From now on it will
be enough to house operations in bricks and to house flows
in vertical line segments. Moreover this can be done on
paper (i.e. 2-dimensionally or 2.5-dimensionally) for any
flow diagram, even a nonplanar one at the cost of having
some vertical flows tunnel under some horizontal operation
boxes.

These algorithms vary widely in depth. 2jc is a substantial
advance. The others are more straightforward (though 3mcp

- r-',. r , 4

requires some analytic number theory.)

2.2 Objectives

Appendix A contains a detailed description of the objectives
of this research effort (objectives a through h.)

2.3 Status of'the Research Effort

As this report shows, objectives a, b, and c have been met.
Objectives d and g have been partially attained, and the
conditions surrounding further investigation have been well
delineated for a phase 2 effort. Good preliminary progress
has been made on objectives e and h; this progress can be
considered a staging ground for substantial further research
during phase 2. The research on objective f has not yet led
to any interesting results.

2.4 Publications

No publications have yet arisen from this work. Several are
currently in preparation.

2.5 Personnel

Bob Blakley, G.R. Blakley, R.D. Dixon, and A.M. Hobbs did
research on this project. See pages 16, 17, 21, and 22 of
appendix E for more information about these researchers.

2.6 Interactions

No presentations associated with this work have yet been
made. No consultations have yet been entered into. No
inventions or patent applications have resulted from this
research.

5

3.0 Definitions of Graph-Theoretic Terms

3.1 Simple Graph

A simple graph G is a pair (V(G), E(G)), where V(G) is a
finite nonempty set whose elements are called the vertices
of G, and where E(G) is a finite, possibly empty set of
unordered pairs of distinct elements of V(G). Elements of
E(G) are called the edges of G.

Note that we do not consider infinite graphs in this report.

3.2 Graph

A graph G is a pair (V(G), E(G)), where V(G) is a finite
nonempty set whose elements are called the vertices of G,
and where E(G) is a finite, possibly empty bag of unordered
pairs of elements of V(G). Elements of E(G) are called
edges of G.

A bag is a collection of items which allows repeats; i.e. it
is like a set, except that elements may appear more than
once.

Note that a graph is like a simple graph, except that it may
contain loops (edges from a vertex to itself) and multiple
edges (more than one edge between the same two vertices --
this is why E(G) is a set in the definition of a simple
graph but a bag in the definition of a graph.)

3.3 Connected Graph

A path from va to vb in G (where va and vb are elements of
V(G)) is a finite sequence v(l),v(2),...v(n) of vertices
from V(G) satisfying the following conditions:

(i) n is a positive integer
(ii) v(l) - va and v(n) - vb
(iii) for every v(i),v(j) such that j - i+l, {v(i),v(j)} is
an element of E(G).

A graph (or simple graph) is connected if for every pair of
distinct vertices va and vb in V(G), there is a path from va
to vb.

3.4 Biconnected Graph

A graph G is biconnected if the following conditions are

6

satisfied:

(i) G is connected
(ii) There is no vertex v in V(G) such that the graph
(V(G)-v, E(G)-e(v)) formed by removing v and all edges
incident upon v is not connected.

(if v is an element of V(G), e(v) is the set

{e I e is an element of E(G) and
e is of the form {v,v'),

where v' is any vertex in V(G))

3.5 Complete Graph

A graph G is complete if every pair v and v' of vertices in
V(G) are connected by an edge {v,v'] in E(G).

3.6 Bipartite Graph

A graph G is bipartite if the vertices in V(G) can be
partitioned into two disjoint sets Vl(G) and V2(G) such that
every edge in E(G) is of the form {vl,v2), where vl is an
element of VI(G) and v2 is an element of V2(G).

3.7 Complete Bipartite Graph

A graph G is a complete bipartite graph if the following
conditions are satisfied:

(i) G is bipartite.
(ii) for any two elements vl and v2 of V(G) such that vl is
an element of VI(G) and v2 is an element of V2(G), there
exists an edge of the form {vl,v2} in E(G).

3.8 Digraph

A digraph is just like a graph except that the edges are
ordered pairs rather than unordered pairs.

3.9 Planar Graph

A planar graph is a graph which satisfies the following
conditions:

(i) The vertices of G can be represented by pairwise

7

, - l . , ,W % ., ... ,,,,F

disjoint points in the plane.
(ii) The edges of G can be drawn as simple curves in the

(iii) For each edge v,v' the curve representing (v,v')
has as its endpoints the points representing the vertices v

(iv) For each pair of edges {v,w) and v,w'} which share an
endpoint v, v,w) and {v,w'} intersect at the point
representing v and at no other points.
(v) For each pair of edges {v,v'), {w,w') which do not share
a common endpoint, the curves representing {v,v'} and w,w'}
do not intersect.

Intuitively, these conditions amount to requiring that we be
able to draw the graph in the plane in such a way that the
vertices do not overlap and the edges do not cross one
another or cross over a vertex which they do not contain as
an endpoint.

3.10 Plane Imbedding

A plane imbedding of a planar graph is a mapping PE which
takes vertices in V(G) to points in the plane and edges in
E(G) to simple curves in the plane such that the points and
curves satisfy the conditions enumerated in the definition
of a planar graph above.

8

,, ,, r , .+

,' %',Jillj

4.0 History I: Determining Graph Planarity

4.1 The Problem

Given an arbitrary graph, we would like to be able to tell
whether or not that graph can be drawn in the plane (for
example, on a sufficiently large sheet of paper), in such a
way that all vertices occupy disjoint points and no two
edges intersect one another except possibly at their mutual
endpoints.

From this point on, this report will deal only with
biconnected graphs. For arbitrary graphs, planarity
determination and planar imbedding are easily accomplished
by breaking the graph down into biconnected components,
solving the problem for those components, and combining the
solutions.

4.2 Early Algorithms

4.2.1 Euler's Formula

In 1750, Euler proved that for any plane graph, if F(G)
denotes the set of faces of the graph, then

IF(G)I + JV(G)I - IE(G)I - 2

Euler's proof can be found in any graph theory text (e.g.
[W179].)

A corollary of this formula is that any connected simple
planar graph satisfies the inequality

IE(G)I < 3*IV(G)I - 6

(Because any face in such a graph must have at least three
bordering edges, and every edge borders exactly two faces.)

This inequality gives us a simple crude test for rejecting a
large class of graphs which are not planar, but it does not
allow us to answer the planarity question for general
graphs.

4.2.2 Kuratowski IV(G)I**6 Algorithm

In 1930, Kuratowski discovered a necessary and sufficient
condition for planarity of a connected simple graph. He
proved that a graph is planar if and only if it contains no

9

subgraph which is homeomorphic to K(3,3) or K(5). A proof
of Kuratowski's theorem appears in [BM76].

Kuratowski's theorem can be used to show that a graph is
planar if and only if it contains no subgraph which is
contractible to K(3,3) or K(5) (see [W1791 for details),
which allows us to produce an algorithm for checking
planarity. The contraction algorithm, however, is
inefficient; according to Tarjan [TA71], it requires a
minimum of IV(G)I**6 time.

4.3 Linear Time Algorithms

4.3.1 Lempel-Even-Cederbaum Vertex Addition Algorithm

Lempel, Even and Cederbaum demonstrated an algorithm for
testing graph planarity in 1966 [LE67]. This algorithm was
roved to be realizable in linear time by Even and Tarjan
ET76] and Booth and Leuker [BL76] in 1976. A simple
presentation of the algorithm appears in [CN85].

Their algorithm works basically as follows: assume that we
have a graph G, and that some portion of G is already
imbedded, so that a number of vertices vl...vi are drawn,
and all edges connecting vertices in the set {vl, ..., vi)
(but no edges connecting vertices outside this set, and no
edges connecting vertices in the set with vertices not in
it) have also been drawn. We want to imbed the rest of the
graph.

First, for each vertex v' in {vl, ..., vi}, add a "virtual"
vertex for every vertex vj in V(G) - {vl, ..., vil which is
adjacent to v'. Label this virtual vertex "vj" (note that
since several vertices in {vl, ..., vi} may be adjacent to
the same vj in v(G) - {vl, ..., vi), there may be several
virtual vertices with the same label.) Connect v' to vi
with a virtual edge.

This step results in a graph which looks like the imbedded
version of {vl, ..., vi) with a bunch of labelled virtual
vertices hanging down from it by virtual edges.

Pick the smallest virtual vertex label vJ. Choose all
virtual vertices labelled vJ. If there is only one, no work
needs to be done, so simply replace the virtual vertex with
a real vertex. Otherwise (if there are several virtual
vertices labelled vJ), try to rearrange the virtual vertices
and edges in such a way that all virtual vertices labelled

10

vJ can be superimposed (the associated virtual edges will
need to be moved so that they are still connected to both of
their endpoints) without causing any edges to intersect. If
this can be done, then replace all virtual vertices labelled
vJ with a real vertex at the location of superimposition,
and turn all the virtual edges into real edges at their new
"rearranged" positions.

It is important to note that the rearrangement of virtual
edges may require rearrangement of the already drawn real
vertices and edges as well as rearrangement of virtual edges
and vertices; this requires the algorithm to be able to
backtrack and modify the work it has already done in
imbedding {vl, ..., vi}.

If the algorithm ever reaches a condition in which a set of
virtual vertices with the same level cannot be merged, then
the graph is not planar. Otherwise, the algorithm generates
a plane imbedding.

4.3.2 Hopcroft-Tarjan Path Addition Algorithm

In 1970, John Hopcroft and Robert Tarjan invented an
IV(G)I*log(IV(G)) time algorithm for determining whether or
not an arbitrary biconnected graph is planar. They later
refined this algorithm to achieve linear time. This
linear-time algorithm formed the basis for Tarjan's doctoral
dissertation [TA71], and was published in [HT74]. This
paper was corrected in [DE76]. A good presentation of the
corrected algorithm appears in [RN77J.

The Hopcroft-Tarjan approach is based on depth-first search.
The basic approach is this:

(1) Choose a spine cycle C (a closed cycle of edges in the
graph). Imbed it in the plane.

(2) Decompose the remaining edges in the graph into a set of
edge-disjoint paths.

(3) Attempt to imbed each path in this set in the plane,
either entirely inside or entirely outside C.

If all paths can be imbedded then the graph is planar;
otherwise it is not. Obviously, some difficulties arise.
The fact that a previously imbedded path (say, inside C)
interferes with the imbedding of the current path does not
necessarily imply that there is no planar imbedding; the

11N10140 M W WM W W 611

previously imbedded path might be able to be imbedded
outside C instead, which would clear the way for the
imbedding of the current path. It is therefore necessary to
allow for backtracking in the algorithm, to permit edges to
be moved from outside to inside or vice-versa if it becomes
necessary. The algorithm uses depth-first search to
generate paths in a canonical order and to allow for just
this sort of backtracking.

12

5.0 History II: Plane Imbeddings of Planar Graphs

5.1 The Problem

Given a graph which is known to be planar, we would like to
be able to produce a drawing of it in the plane with no
edge-crossings. Recall from our definitions that a plane
imbedding is described as follows:

Given a graph G, a plane imbedding is a mapping which
associates a point P(v) in the plane with each vertex v of G
and a simple curve C(e) in the plane with each edge e of G
such that:

(1) if e - {vl,v2l, then the endpoints of C(e) are P(vl) and
P(v2).

(2) no two of the simple curves representing edges intersect
except possibly at their mutual endpoints.

A straight-line imbedding is, of course, a plane imbedding
in which all of the simple curves produced by the mapping C
are straight line-segments.

5.2 The Chiba-Nishizeki-Abe-Ozawa Linear Time Algorithm

Chiba, Nishizeki, Abe, and Ozawa [CN85] have modified the
Lempel-Even-Cederbaum linear-time planarity-testing
algorithm to produce a plane imbedding in linear time.
Furthermore, they demonstrate an algorithm for finding all
possible plane imbeddings of a given planar graph.

5.3 The Hopcroft-Tarjan Linear Time Algorithm

Rheingold, Nievergelt, and Deo note [RN77] that the
Hopcroft-Tarjan planarity-checking procedure can be modified
to produce a plane imbedding without requiring more than
linear time. This is accomplished by modifying the
algorithm so that it builds a dependency graph which reports
which paths must be imbedded inside and which outside the
spine cycle (and, since the checking algorithm is recursive,
which paths must be imbedded inside and outside of each
successive recursively generated cycle.) This dependency
graph contains enough information to allow the construction
of a list of clockwise traversals of each of the faces in
the graph, which is one way of describing a plane imbedding.
Mehlhorn [ME84] presents a complete version of the
Hopcroft-Tarjan algorithm and the modifications necessary to

13

use it to generate plane imbeddings (which he calls "planar
maps).

As Tarjan explains in [TA87], the first linear-time version
of the Hopcroft-Tarjan planarity-testing algorithm [TA71]
built the dependency graph as part of the planarity-testing
process, but later versions of the algorithm were made more
efficient through the addition of a data structure which
made construction of the dependency graph unecessary.

5.4 Wagner and Fary on Straight-Line Imbeddings

Wagner [WA36] proved in 1936 that any planar graph can be
imbedded in the plane in such a way that all edges of the
graph can be drawn as straight lines. Fary EFA48] proved
the same result independently in 1948.

Behzad and Chartrand [BC71] Present a proof of the
Wagner-Fary theorem together with a description of how to
produce a straight-line imbedding. The procedure they
describe, however, produces an imbedding which suffers from
the so-called "problem of scale"; that is, the area enclosed
by the imbedding (excluding the face which contains
infinity) may be very large compared to the shortest edge,
even for graphs which contain relatively small numbers of
vertices.

5.5 Duchet, et. al. on Straight-Line Imbeddings

In 1982, Duchet and four coworkers [DH83] proved a
conjecture of de Fraysseix and Rosenstiehl [FR81] that every
finite loopless planar graph G can be imbedded in such a way
that the following conditions are satisfied:

(1) The vertices of G are represented by pairwise disjoint
horizontal line-segments.

(2) The edges of G are represented by pariwise disjoint
vertical line segments.

(3) The segment that represents an edge xy joining vertices
x and y intersects the segments representing x and y, and
has an empty intersection with all other horizontal
segments.

Unfortunately, the result of Duchet, et. al., still suffers
from the problem of scale; in fact, the construction
presented in [DH83] compounds the scale problems of the

14

On

already possibly very large Fary representation. The authors

do not address the scale problem in their paper.

5.6 The Ullman "<- IV(G)I**((log IV(G)I)**2)" Space Algorithm

Ullman [UL84] proves that planar graphs of order 4 or less
(the order of a graph is the maximum number of edges
incident upon any vertex) can be imbedded in the plane in
area order [V(G) *((log IV(G)I)**2). He also identifies
several important families of planar graphs which can be
imbedded in area order IV(G) *(log |V(G)I). Recently,
Sherlekar [SH8?] has used an approach based on Ullman's to
demonstrate that plane imbeddings of planar graphs of
arbitrary degree can be imbedded in area order IV(G)I**2,
and that some planar graphs (indeed, even some of small
degree) require area proportional to IV(G)I**2 for their
planar imbeddings.

15

6.0 The Jailcell (2jc) Representation of Plane Graphs

6.1 Description

Recall from the previous section that de Fraysseix and
Rosenstiehl postulated, and Duchet et.al., proved, that any
loopless planar graph G can be imbedded in the plane in such
a way that the follcwing conditions are satisfied:

(1) The vertices of G are represented by pairwise disjoint
horizontal line segments.

(2) The edges of G are represented by pairwise disjoint
vertical line segments.

(3) The vertical segment that represents an edge (x,y)
joining vertices x and y intersects the segments
representing x and y, and has an empty intersection with all
other horizontal segments.

If we impose the following additional conditions:

(4) The horizontal segments representing vertices of G are
drawn at consecutive positive integer coordinates starting
with 0.

(5) The vertical segments representing edges of G are drawn

at consecutive positive integer coordinates starting with 0.

Then the resulting drawing is called a "jailcell imbedding".

One of the accomplishments of YLYK, Ltd. under this contract
has been the development of an algorithm to produce a
jailcell imbedding given a planar imbedding of a simple
biconnected planar graph. This algorithm is described in
the next section. (Actually, the algorithm described in the
next section produces vertical vertex-segments and
horizontal edge-segments, but turning this representation on
its side produces the version described above and is
entirely straightforward.)

6.2 The Jailcell Algorithm

The jailcell algorithm accepts as input a "facelist" (such
as the one produced by the modified Hopcroft-Tarjan planar
imbedding algorithm) representing a biconnected graph, and
produces a jailcell imbedding of that graph; unlike the
Hopcroft-Tarjan and Lempel-Even-Cederbaum algorithms, the

16

I.
9

jailcell algorithm does not test a graph for planarity.

The jailcell algorithm is a face-addition algorithm, which
differentiates it from the path-addition approach of
Hopcroft and Tarjan and from the vertex-addition approach of
Lempel, Even, and Cederbaum.

To run the jailcell algorithm, we need as input a plane
imbedding in the form of a list of faces whose vertices are
enumerated in clockwise order. "Clockwise order" is defined
in the following way: pick some vertex adjacent to the face
you are enumerating. Now, pretend that you are standing
inside the face. Place your left hand on the "wall"
(composed of the vertices and edges of the enclosing face)
at the position of the vertex. Mark the vertex with chalk.
Put the number of the vertex in a (previously empty) list L.
Now start to walk, keeping your left hand on the wall. Every
time you encounter a vertex, check to see if it is marked
with chalk. If it is, stop (the list L now contains a
clockwise enumeration of the vertices in the face).
Otherwise, put the vertex's number at the end of the list L.

Given a plane imbedding in the form of a list of faces whose
vertices are enumerated in clockwise order, we proceed as
follows:

First, we choose a face to be the "exterior face" of the
jailcell imbedding (i.e. the face which contains infinity.)
We draw this face (representing vertices as vertical
segments and edges as horizontal segments) in such a way
that its interior will contain the "infinity point" of the
sheet of paper we're drawing the graph on. (We can always
do this because we have the vertices of the face enumerated
in clockwise order.) We draw the face in such a way that no
two edges adjacent to it are at the same y-coordinate and no
two vertices adjacent to it are at the same x-coordinate.
(We also make sure that it fits into a box whose borders are
the lines y-0, x-0, y-1/2, x- 1/2.) At this point, all
further drawing is constrained to take place "outside" the
exterior face, which is to say "inside" the connected figure
drawn on our piece of paper. It is also important to note
that we draw this face in such a way that the vertical
segments (representing vertices) with the largest and
smallest x-coordinates have an unobstructed "visibility
interval" in the interior of the figure on the piece of
paper. A visibility interval between two vertical segments
vl and v2 at x-coordinates xl and x2 (xl < x2) is simply a
vertical interval such that no vertical segment with an

17

x-coordinate x3 (xl < x3 < x2) intrudes into the interval
(so you could draw a line segment between v1 and v2 at any
height contained in the interval without crossing any
segment representing another vertex.) As we draw each edge
of this face, we determine the unique face which is adjacent

to the current face across the current edge. We place this
adjacent face onto the end of an "imbedding order" list
(unless it already appears in the imbedding-order list; we
don't allow duplicates.)

Now we will imbed each of the remaining faces one at a time.
We imbed the faces in the order in which they appear on the
imbedding-order list. Get the first face off the
imbedding-order list and call it F. At any point in the
imbedding process, the plane (our piece of paper) is divided
up into a number of faces (which have already been drawn)
and a number of other "regions". Regions are areas in which
faces may be drawn in the future. A region may later turn
out to be a face (without having to be further modified), or
it may be divided up into several different faces by the
imbedding process. (Note that once a face is drawn, nothing
will ever have to be drawn inside it.) We now determine
which region must contain the face F. This is easy to do,
since we have the clockwise ordering of the edges of F, and
we can determine by examination the clockwise ordering of
the edges enclosing each region in our drawing. Since each
edge occurs only twice in the graph (once in each
orientation), we must simply find a region R which contains
any edge of F in the proper orientation, and we know that
that R must contain F. (The version of the algorithm which
will actually be programmed into a computer keeps a "region
list" containing each remaining region and the clockwise
list of its edges, so that we don't have to examine the
whole graph every time we need to know which region encloses
a given face.)

Now we "trace around" the face in clockwise order, starting
with the edge which F has in common with R (note that F may
have many edges in common with R; we simply take the first
one we encounter.) as long as the edges of F we "trace
over" are also edges of R, we do nothing (they are already
drawn.) When we come to an edge el which is in F but not in
R, then we need to do some more drawing. First, we find the
longest clockwise path P anchored at el which contains no
edge in R (that is, the longest sequence of edges of F,
enumerated in clockwise order, starting with el, such that
no edge in the sequence is in R.) Say this path is
{el,...,ek). The edge ek has the property that its

"counterclockwise, endpoint is shared with an edge in the
path (that is, in F but not in R), but its clockwise
endpoint is shared with an edge which is in both F and R.
Our task now is to draw P.

To draw P, we need to find the visibility interval of the
region R. We are guaranteed when we imbed the first face
after the exterior face that all the regions in the plane
will have visibility intervals (since there's only one
region and we constructed it so that it would have such an
interval.) As will be seen below, all the regions we
generate during the imbedding process will have visibility
intervals, so we will always be able to find such an
interval for R. (A program implementing the algorithm
should probably determine a region's visibility interval and

store it in the region list at the time the region is
created.) Once we have found the visibility interval of R,
we draw P as follows:

Say that the endpoints of el are vlcw and vlccw (vlccw is
the first vertex of the el encountered when traversing F in
clockwise order and vlcw is the second vertex encountered
when traversing F in clockwise order); similarly, the
endpoints of e2 are v2cw and v2ccw, and so on (note that the
only two vertices in the path which have already been drawn
are vlccw and vkcw. Note also that vlcw - v2ccw, v2cw a
v3ccw, and so on). Assume without loss of generality that
vlccw is drawn at x-coordinate xl and vkcw is drawn at
x-coordinate xk, where xl > xk (so vlcw is to the right of
vkcw on our sheet of paper). "Extend" vl in the y-direction
(the extension will consist of a segment added to either the
top or the bottom of the segment currently representing vl)
to the height which is at the halfway point of the
visibility interval of R. Now say that the (vertical)
visibility interval of R is (yb, yt) where yb < yt. The
halfway point of the visibility interval is ((yt - yb) / 2)
+ yb. Call this value yc. Let xc - xl. Perform the
following procedure:

19

for i := 1 to k do

draw a segment representing ei at at y-coordinate yc,
extending from x - (3/4(xc-xk)+xk) to x - xc.

set xc :- (3/4(xc-xk)+xk).

if (i not equal to k) then do
draw segment representing vicw (also v(i+l)ccw)

at x-coordinate xc
extending from y - yc to y - ((yt-yc)/2)+yc.

set yc :- ((yt - yc)/2)+yc.
od (* end "if" *)

od (* end "for" *)

extend vkcw by adding a segment at x-coordinate xk
extending from y - yk to y - yc.

Notice that, after the path P is added using this algorithm,
R has been divided into two new regions RI and R2, a "top"
region and a "bottom" region. Assume without loss of
generality that RI is the "top" region and R2 is the
"bottom" region. If the vertical extent of the visibility
interval of R was Y(R), and the "end vertices" of R which
were used to determine that visibility interval were vL(R)
and vR(R), then it is easy to determine that the "top"
region RI has a visibility inverval with end vertices vL(R)
and vR(R) and vertical extent (i/(2**k))*Y(R), and the
"bottom" region R2 has a visibility interval with end
vertices vkcw and vlccw and vertical extent (Y(R)/2).

The reader can verify that the use of the factors 1/2 and
3/4 in the formulas for positioning vertex- and
edge-segments in the procedure above guarantee that no two
edge-segments will ever occupy the same y-coordinate and no
two vertex-segments will ever occupy the same x-coordinate.

At this point we have imbedded P, but there may still be
some edges of F which have not yet been drawn. Determine
which of the regions R1 and R2 contains F (one of the two
must). Assume without loss of generality that it is Ri.
Simply continue the clockwise "tracing" of F, imbedding the
next path which is not part of RI in the same way as we
imbedded P above. Continue this path-imbedding process
until all the edges and vertices of F have been drawn. The
face-imbedding process for F is now complete. We have drawn
all of F, and nothing more will have to be drawn inside F.
We have also created a number of "other" regions, each of

20

which has a visibility interval of finite length, into which
future faces may be imbedded.

Now repeat the face-imbedding procedure described above
until all faces have been drawn.

In the final step, we must move all edges and vertices to
integer coordinates. To do this, we simply sort the
vertical coordinates of the segments representing edges into
increasing order and assign to each coordinate the integer

corresponding to its position in the resulting ordering,
starting with 1. We then replace the "original" vertical
coordinates in all edge-segments and vertex-segments with
the "new" integer coordinates. (since no two edges occupy
the same vertical coordinate, we don't have to worry about
having two edges at the same integer height, and since the
way we generate the vertical coordinates insures that no
edge initially occupies an integer height other than 0, we
don't have to worry about our "new" integer coordinates
generating name-clashes with the old coordinates during the
renaming process.)

We repeat the above procedure to sort the horizontal
coordinates and replace them by consecutive integers.

we have now finished building the jailcell representation of
the graph, and we can print out the line segments which
comprise it.

In order to turn the jailcell representation of a graph into
a jailcell flowchart, we must do several things: first, we
must take the jailcell imbedding of the graph and "turn it
on its side" so that vertices are horizontal and edges are
vertical. Second, we must expand the (now) horizontal line
segments representing vertices into horizontal bricks in the
correct way. Third, we must expand the horizontal axis and
reposition the (now) vertical segments representing edges so
that those edges representing downward flows are drawn at
odd x-coordinate positions and those representing upward
flows are drawn at even x-coordinate positions (it is
possible that this procedure may generate "gaps". A gap is
a pair of consecutive integer x-coordinate locations both of
which are unoccupied by edges. Gaps occur when an up-flow
and a down-flow occupy adjacent x-coordinates in the
underlying jailcell graph. Gaps can simply be removed, and
the obvious renumbering performed. Removal of gaps results
in a jailcell flowchart in which at least one of every two

21

consective-integer x-coordinate locations is occupied by a
flow.) Each of these three transformations is entirely
straightforward.

6.3 Time and Space Complexity Considerations

6.3.1 O-Notation

In the analysis below, we follow the time-order notation
convention of Aho, Hopcroft, and Ullman [AH74]. A function
g(n) is said to be O(f(n)) if there exists a constant c such
that g(n) <= c*f(n) for all but some finite (possibly empty)
set of non-negative values of n. In this case, we say that
g(n) is "order f(n)".

Thus, when we speak of an imbedding "occupying 0(f(IV(G)I))
area", we mean that the amount of area needed to draw an
imbedding of a graph G with IV(G) I vertices is no more than
some constant times f(IV(G)I) units, where units are some
standard measure of area such as square centimeters.

Similarly, when we speak of an algorithm "running in
0(f(fV(G)I)) time", we mean that the algorithm will take no
more than some constant times f(IV(G)I) steps when run on a
graph with IV(G)I vertices, where "steps" are some standard
time interval such as seconds or microseconds.

In what follows, "linear time" means time linear in the
number of vertices of the graph (i.e. O(IV(G)I).)

The important thing to bear in mind is that order statistics
do not give information about the absolute running time of
an algorithm (or area of an imbedding); instead they
describe the growth of the running-time of an algorithm (or
area of an imbedding) as a function of the number of
vertices provided as input.

6.3.2 Space Complexity of Jailcell Representation

It should be evident from the definition of the jailcell
imbedding that such an imbedding occupies O(IV(G)I**2) area.
(In fact, it fits exactly in a rectangle whose sides have
lengths IV(G)I and IE(G)I, where, by Euler's formula, ,E(G),
<- 3*IV(G)I.-6.)

22

I

6.3.3 Worst-Case Time Complexity of Jailcell Algorithm

We observe first that by Euler's formula,

IE(G)I <- (3 * IV(G)I) - 6

so IE(G)I is O(IV(G)I). Similarly, JF(G)N is O(IV(G)I).

Before we run the Jailcell algorithm, we can construct an
"adjacent face list" which tells us for each edge which two
faces it borders on. If we take the simpleminded approach
to building this list, we could have to visit every edge in
every face in our facelist (there are 2*IE(G)I of these) to
calculate each entry of the list. Thus, building this list
could take 2*(IE(G)l**2) time, which is O(tV(G)I**2).

Drawing the exterior face takes linear time. Determining
and storing the visibility interval of the interior also
takes linear time, since we could have to look at every edge
adjacent to the region. Updating the imbedding-order list
as we proceed with the drawing takes O(IV(G)I**2) time;
since we can use the information in the adjacent-face list
to determine which face to put on the imbedding-order list
each time we visit a face, we must simply search the
adjacent-face list (which has O(IV(G)I) entries) for each
face adjacent to the interior region. The entire procedure
of adding the exterior face thus can be accomplished in
O(IV(G)I**2) time.

Each additional face has no more paths than it has edges
(since each path has at least one edge), so we must run the
path-imbedding procedure no more than O(IV(G)I) times.
Imbedding a path involves: (1) finding it (you might have to
search all the edges in a face if there are no paths), which
takes O(IV(G)I) time, (2) finding which region it is in (you
might have to compare all the edges of the path with each
edge in each entry on the region list, which would take
O(lV(G)I**3) time, (3) drawing it, which takes O(IV(G)I)
time, (4) finding the visibility intervals of the new
regions created, which also takes linear time as observed
above, (5) adding the new regions to the region list, which
takes linear time since we must construct their edge lists,
and (6) updating the imbedding-order list at each edge,
which takes O(IV(G)I**2) time since we could have to search
the adjacent-face list once for each edge we add. Thus, the
entire path-drawing procedure takes no more than
O(V(G) **3) time, and we must repeat it no more than
O(IV(G)I) times per face, so imbedding a face takes no more

23

than O(IV(G)I**4) time.

Finally, there are no more than O(IV(G)I) faces, so
imbedding the entire graph after the first face takes no
more than O(IV(G)I**5) time, and since building the
adjacent-face list and imbedding the first face took only
O(IV(G)I**2) time, the entire jailcell algorithm is
polynomial and in fact can be run in O(IV(G)I**5) time.

The algorithm as we have stated it is almost certainly not
the most efficient algorithm possible for generating
jailcell imbeddings; a phase-Il objective should be to
produce a more efficient version (linear-time, if possible;
certainly O(IV(G)I**3) or even O(IV(G)j**2) should be
achievable.)

24

7.0 Snarls

On page 5 of Appendix E we have given an extremely simple
example of a GOTOful program, K(3,3) ZENSORT. It was
designed for logical simplicity, and it was therefore
reasonable to make it a sort. The reason for this is that
the only operations performed in sorts are compares and data
moves. This simplicity of structure enables the reader to
see the necessity for an unconditional branch without
distractions in a language of very little power. But it is
reasonable to ask whether there are important types of
problems which actually require a GOTOful approach in
coding. In other words, are there types of programs which
should be written with unconditional branches? A moment's
reflection will suggest error trap routines, which have come
to be the despair of those who (erroneously) equate
structured programming with GOTOless code. The natural way
to code most error correction procedures is to go about the
error trapping on a case by case basis, and within each case
escape to a subroutine which corrects an error in any one of
a variety of ways which depend on the presumed nature of the
error. In general, these error-trap routines do not return
to the point of call, so a branch to such a routine is an
unconditional one-way branch.

Error control was picked above because it is an outstanding
example of the need for unconditional branches in
current-day programs. The reader can no doubt think of
numerous other types of problems which cry out for programs
with unconditional branches. Rubin [RU87 appears to think
that most sizable problems are most naturally handled by
code involving some unconditional branching.

YLYK Ltd. takes a less extreme position than Rubin's. We
merely claim that much important code (not merely error
trapping routines) should be written using GOTOs. We base
this position on the observation that large graphs are
likely to exhibit snarls (see the extensive discussion of
snarls in the proposal which led to this contract. It can
be found on pages 7-10 of Appendix E). A snarl, it will be
recalled, can be regarded as a minimal nonplanar piece of a
flow diagram. The presence of a snarl in a flow diagram is
an indication that the diagram locally departs from the
Bohm-Jacopini paradigm [BJ66] of imbeddability in a plane.
Their proof that there is an algorithm "equivalent" to the
algorithm suggested by the flow diagram under discussion,
and that the equivalent algorithm has a planar flow diagram,
is irrelevant. For whatever reason, the flow diagram under

25

discussion is the one which will be reduced to code. And
this diagram has a snarl. So the natural way to write the
corresponding code is with a GOTO. It may well be that that
the systems analyst has explicitly rejected a planar flow
diagram in favor of a nonplanar one to accomplish the same
objective. In other words, despite much hortatory ink
spilled since [D168], GOTO may often be the way to go.

26

8.0 Naive Representations of Nonplanar Graphs

YLYK Ltd. has devised three different ways to turn
appropriate local information (i.e. the adjacency matrix,
zeta, of the graph) into a global solid (i.e. 3-dimensional)
flow diagram, and one way to turn it into a "2.5
dimensional" representation (i.e. like a drawing on
paper,but with crossovers).

We make use of several technical terms, such as pole,
terrace, brick, and lath, in what follows. See Section 7.1
below for definitions of these terms. (We have no greek font
available on this word processing system. For compatibility
with the original proposal contained in Appendix E, we will
simply write the English name of the Greek letter zeta.)

1.) An unintelligent canonical method called the "2-level
crossbar/pole" representation (3cp). This produces a "short
fat" two-story structure in 3 dimensional space. There are
numerous terraces on level I and numerous terraces on level
2, as well as numerous upright beams (poles), each of which
connects one of the former to one of the latter, but touches
no terrace other than these two.

2.) A largely canonical (hence largely unintelligent)
method called the "multilevel starbody/pole" representation
(3msp). This produces a "long tall" structure in 3
dimensional space. It has exactly one terrace on every
level from level 1 to level v, where v is the number of
vertices in the original graph. There are numerous upright
beams (poles), each of which goes from one terrace to
another without touching any other terrace.

3.) A "multilevel convexbody pole" representation (3mcp)
similar to 3msp, but with convex terraces.

4.) A somewhat intelligent noncanonical method called the
"basketweave" representation (2.5b). This draws a nonplanar
graph on paper. the price it pays for this unnatural act is
the need to draw a few crossovers. Every such crossover is
of the same kind, a lath tunneling under a brick. This
graphical convention is very natural and easy to take in at
a glance.

27

8.1 Terminology for YLYK, Ltd.'s Graph Imbedding Algorithms

It will be necessary to describe drawings of a graph in 2
dimensions and in 3. Though these two types of drawings are
in the same spirit, it will be important to have
terminologies which immediately alert the reader to the
dimensionality of the context.

Thus in 2 dimensions (i.e. in the XY-plane):

the X-axis will be called "horizontal";

the Y-axis will be called "vertical";

a rectangle whose width exeeds its height will be
called a "brick";

a line segment parallel to the Y-axis will be

called a "lath".

And in 3 dimensions (i.e. in XYZ-space):

the X-axis will be said to run "east/west";

the Y-axis will be said to run "north/south";

the Z-axis will be said to run "up/down";

a plane parallel to the XY-plane will be called "level"

a connected set of points in a level plane will be
called a "terrace";

if a terrace is a rectangle with sides parallel to
the X and Y axes whose north/south extent exceeds
its east/west extent, it will be called a "beam";

if a terrace is a rectangle with sides parallel to
the X and Y axes whose east/west extent exceeds
its north/south extent, it will be called a "plank";

if a terrace is starshaped [MU75, p.330] with
respect to the point at which it intersects
the Z-axis, it will be called a "starbody";

if a terrace is convex it will be called a "convexbody";

28

a line segment parallel to the Z-axis will be called
a "pole".

We thus have the analogies

level : pole : up/down : 3 dimensions ::

horizontal : lath : vertical : 2 dimensions.

Also, though perhaps not exactly analogous to one another,
terraces and bricks are used the same way. Each of them
represents a vertex in a graph, and each of them should be
regarded as a piece of cardboard on which you can write an
instruction in a flow diagram. Poles and laths are exactly
analogous to each other and are also used the same way.
Each of them represents an edge in a graph, and each of them
should be regarded as a single flow in a flow diagram.

With this dimension-specific terminology we can easily
describe the outputs of all our algorithms.

Let G be a biconnected graph. The output of the jailcell
algorithm is the union of a set of bricks and a set of
poles. The height of each brick is 1/2 and the y
coordinate of the center of each brick is a positive integer
no larger than IV(G)I. The leftmost points of any brick
have x coordinate of the form t - 1/4, where t is a
positive integer no larger than IE(G)I, the number of edges
of the graph being represented.

The rightmost points of any brick have x coordinate of the
form s + 1/4, where s is a positive integer no larger
than IE(G)I.

No two bricks contain points with the same y coordinate.
Hence, for every positive integer j between 1 and IV(G) I
inclusive, there is exactly one brick whose center has y
coordinate equal to j. There are no other bricks. In crude
intuitive language the bricks have uniform vertical spacing.
Since the vertical extent of each brick is 1/2 it follows
that the highest point of any brick is 1/2 unit lower than
the lowest point of the "next brick up". These two bricks
might not overlap horizontally, of course. By this we mean
that that the largest x coordinate of any point of one
brick might be much smaller than the smallest x coordinate
of any point of the other.

29

The set of poles in the output of the jailcell algorithm has
IE(G)I members. Since only planar graphs G can be drawn by
the jailcell algorithm, it follows [W179] that IE(G) I is
no larger than 31V(G)l - 6. The x coordinate of any
point of any pole is a positive integer no larger than
2*IE(G)I, which is, in turn, no larger than 6*IV(G)I - 12.
Every pole intersects exactly two bricks. The intersection
of any pole with any brick is a single point. It follows
that every such intersection occurs at the top or at the
bottom of the brick in question, as well as at the top or at
the bottom of the pole in question. If the graph being
represented is a directed graph then the points of a pole
have odd x coordinate if the pole represents a flow from a
lower brick to a higher brick, and have even coordinate if
the pole represents a flow from a higher brick to a lower
one.

We turn now to the output of the 2-level crossbar/pole
algorithm (3cp), an algorithm so named because its outputs
look something like the old crossbar switches in telephone
exchanges. Let G be any graph. Then the output, in 3
dimensions, of 3cp looks like the floor planks, the roof
beams, and some of the uprights joining these two types of
structural members, visible a few days into the construction
of a supermarket. In our agreed-upon terminology there will
be IV(G)l beams such that the z coordinate of every point
on every beam is equal to 1. There will also be IE(G)
planks such that the z coordinate of every point on every
plank is 0. There will be 2*IE(G)I poles of up/down
extent 1. If (x,yO) is the point at the base of any pole,
then x is a positive integer no larger than IV(G) I and y is
a positive integer no larger than IE(G)I. In fact, the ith
plank is the set

P(i) - {(x,y,0) : 1/2 <- x <- IV(G)I + 1/2,
i - 1/4 <- y <- i + 1/4 }

and the jth beam is the set

B(j) - {(x,y,l) : j - 1/4 <- x <: j + 1/4,

1/2 <- y < E(G) I + 1/2

There are poles from B(j) to P(i) and P(k) if and only if
there is an edge from vertex i to vertex j in the graph G.
If the graph G is a directed graph then each pole has an
orientation imposed on it in the obvious way.

30

'1

8.2 The 2-Level Crossbar Pole (3cp) Representation of Nonplanar
Graphs

The 2-level crossbar/pole algorithm (3cp) does not
faithfully draw a graph G by means of planks and beams to
represent vertices, and poles to represent edges. Hence it
is different from all other algorithms exhibited in this
report. It goes right back to the presumed flow diagram D
which was the motivation for producing zeta, the adjacency
matrix of the graph G. The idea behind the research being
reported here was to draw flow diagrams, not to draw graphs.
In the rest of this report the way we draw a flow diagram is
to draw its underlying graph. But not here. Here we start
with a flow diagram D, produce the corresponding G, then
use G to produce a larger graph H which also faithfully
represents what D does. In fact H is the graph
underlying a flow diagram E which is merely an expansion
of D by the addition of some NOP (no operation) boxes.

The 3cp algorithm works as follows.

Algorithm 3CP:

[1l Start with some description which completely specifies
the flow diagram D. This description will be complete, but
local.

[2] On the basis of this purely local information produce
the adjacency matrix zeta of the graph G which describes
D.

[3] Color every vertex of G red.

[4] Use the colored version of the graph G to produce a
colored graph H in the following fashion. At the middle of
every edge of G put a new vertex, colored green. The
graph so obtained is called H. The graph G had |E(G)I edges
and jV(G) Ivertices. The graph H has 2*IE(G)I edges
and IV(G) IE(G)I vertices. The graph H is not only
2-colored, it is bipartite. No green vertex is adjacent to
any other. No red vertex is adjacent to any other.

Comment. (4) is a graph- theoretic way of putting a (green)
NOP operation into every control flow between (red)
operations in D so as to produce the equivalent flow
diagram E.

31

[5] There are IV(G)I red vertices of the new graph H.
Order them in any fashion so that you have vertices r(1),
r(2), . , r(IV(G)). For each appropriate j build a
beam b(j) in the following fashion. The beam has
north/south extent JE(G)I*l. It has east/west extent 1/2.
It lies on a level one unit above the XY-plane. In
set-theoretic terms

b(j) - {(x,y,z): j - 1/4 <= x <: + 1/4,
1/2 <= y <- IE(G)I + 1/2,

z 1}

Thus the beams all lie in the first octant in XYZ space, all
run north/south for a distance IE(G)I + 1, all are 1/2
unit across, and sit side by side like north/south crossties
on a railroad(paper-thin crossties with zero up/down extent)
whose tracks run east/west.

[6] There are IE(G)i green vertices of the new graph H.
Order them in any fashion so that you have vertices g(l),
g(2), ... , g(JE(G)D. For each appropriate i build a plank
p(i) in the following fashion. The plank has east/west
extent IV(G)I+l. It has north/south extent 1/2. The y
coordinate of its centerline is i. The x coordinates of
its ends are 1/2 and IV(G)I + 1/2. It lies in the z - 0
plane. In set-theoretic terms

p(i) - {(x,y,z): 1/2 <- x <- IV(G)I + 1/2
i - 1/4 <- y <- i + 1/4

z a 01

Thus the planks all lie in the first quadrant of the z 0
plane (considered as an XY-plane), all run east/west for a
distance !V(G)I + 1, all are 1/2 unit across, and sit side
by side like (paper thin) east/west crossties on a railroad
whose tracks run north/south.

[7] Suppose red vertex r(j) is joined to green vertex g(i)
in the new graph H. Then build a pole up from z - 0 to z
a 1 at (x,y) - (j,i). In set-theoretic terms let this
pole be the set

P[j,i] = {(j,iz): 0 <- z <= 1 .

Now things look the following way. A narrow-gauge railroad
track runs east/west at altitude 1 over a broad-gauge
railroad track running north/south at altitude 0 (or
vice-versa). 21E(G)H poles are erected, as described above,

32

to support the upper ties upon the lower ties. For each
upper tie there is at least one such pole. For each lower
tie there is at least one such pole. (In fact, for any given
imbedding, there may be many ties which are in contact with
more than one pole.) Now the tracks and the ground are
gently dissolved away, leaving the ties and poles. Since
they and the epoxy they were put together with are strong,
the structure is a single rigid piece (this actually tacitly
assumes that the original graph was connected. But this
assumption is operative throughout the research. In fact we
assume that G is biconnected. Unconnected graphs simply fall
apart into subproblems). This piece of sculpture is what the
output of 3cp looks like.

[8] Print r(l), r(2), ... , r(IV(G) I), g(l), g(2), ..
g(IE(G)I), and the values of P[j,i] for the appropriate
21E(G)I members of the set

{[j,i]: 1 <- j <- IV(G)I, 1 <- i <- E(G1.

33

117.

8.3 The Multilevel Starbody Pole (3msp) Representation of
Nonplanar Graphs

The multilevel starbody/pole algorithm (3msp) imbeds a graph
in 3 dimensional space in a manner analogous to the
classical imbedding procedure described by Wilson [W179, pp.
22-3].

Algorithm 3MSP:

[I] Let the original graph G have IE(G)I edges and IV(G)I
vertices. Number the edges in any manner from 1 to IE(G)I.

[2] Number the vertices in G in any manner from 1 to
IV(G) I.

[3) Then begin building corresponding terraces in the
imbedding structure in the following fashion. For every
positive integer j no larger than IV(G) I the jth terrace
T(j) will lie within a level plane with z coordinate
equal to j. T(j) will contain a disk D(j) of radius 1
centered on the intersection of this plane with the Z-axis.
T(j) will be starshaped with respect to this disk's center.

[4] Pause in the construction of T(j).

[5] Begin construction of the poles which will join
various pairs of these terraces in the following fashion.
Treat the XY-plane as if it were a complex plane to make
discussion of angles and distances from the origin easy.

Build a "rising sun flag with IE(G)I sunrays" (resembling
the Japanese flag in the early 1940s) in the following
fashion. The set J, which resembles the red area in the
aforementioned flag, is defined to be the union of IE(G)I+l
sets

J - D + A(l) + A(2) + ... + A(IE(G)I)

where

A(k) - w : w is a complex number such that
2k - I < Arg(w) / 2 pi < 2k

for every positive integer k <- IE(G)I. Clearly 3 is a
connected unbounded starshaped (with respect to the origin
(x,y,z) - (0,0,0) of XYZ-space) set. It is a matter of
elementary trigonometry to verify that A(k) contains a
square Q(k) of side 1 containing a point (i.e. complex

34

number) w such that Iwi = IE(G) I. The square Q(k) has
sides parallel to the X-axis and to the Y-axis. Hence there
is a point w(k) belonging to Q(k) with the property that
both its x coordinate and its y coordinate are integers.
Obviously

IE(G)I - 2 < Iw(k)I < IE(G)I+ 2.

For any nontrivial graph G we have the inequality

1 < IE(G)I- 2

A moment's reflection will show that this ostensibly
existential argument has an algorithmic version. In each
"sunbeam" of J (i.e. in each A(k) outside the disk D)
we thus have a point with integer coordinates at a distance
from the origin of less than IE(G)I+ 2. And we have an
algorithmic way of finding this point w(k) = (x[k],y[k],O).
The pole P(k) will then be an upright line segment in
XYZ-space. Its vertical extent will be determined by the two
terraces it connects. This means that P(k) must correspond
to some edge E(k) of the original graph G. This edge
must join two vertices of G. The corresponding two
terraces on the structure we are building will be called
T(p) and T(q) where, without loss of generality, p < q.
The vertical extent of P(k) is thus known. p <= z <= q
for every p - (x,y,z) belonging to P(k). Moreover every
height in this interval is found in P(k). And its
"footprint" will be w(k), i.e. for every point p = (a,b,c)
belonying to P(k) it will be true that a = x[k], and thatb - y k].

[6] Now return to the building of terrace T(j). A
certain number of edges will be incident upon the vertex in
G which corresponds to T(j). So the poles corresponding to
those edges must meet T(j). Moreover all other poles must
miss T(j). This is easily done. Suppose the poles which
must meet T(j) are

P(k[l]), P(k[2]), ... , P(k[m(j)]).

Then we attach to the unit disk at altitude j exactly
m(j) "petals" which resemble truncated versions of

A(k[l]), A(k[2J), ... , A(k[m(j)])

35

elevated from altitude 0 to altitude j in XYZ-space. A
petal L(j,r) is of the form

L(j,r) - {(x,y,j): (x,y,0) belongs to A(r) and

x**2 + y**2 <= (IE(G)I+2)**2}

Now we can define T(j) as the union of m(j) + 1 sets.

T(j) = D(j) + L(j,l) + L(j,2) + ... L(j,m(j)).

[7) At this point we have completed building the terraces
and the poles. We define the drawing as the union of the
terraces and the poles. It resembles a bunch of copies of
the same daisy stacked up at unit distances above one
another. They are oriented in the same fashion so that
somebody looking down at the stack from above would see only
the top daisy. Then various petals are torn off each daisy.
Following this poles are erected on some petals to petals
they can see directly above them. This description does not
do justice to the role of integer coordinates. The top and
the bottom of every pole is a triple (x,y,z) of integers.
The volume occupied by this drawing is less than
IV(G)I*(IE(G)I+2)**2. Because of the remarks on integer
coordinates, there is no problem of scale.

8.4 The Multilevel Convexbody Pole Representation

The multilevel starbody/pole algorithm (3msp) leaves
something to be desired visually. The terraces in question
look somewhat like tattered daisies, each one having a round
center and a few petals. None of them will be convex. The
typical box shapes in conventional flowcharts are more often
than not convex (e.g. rectangles, circles, lozenges) because
they are viewed as little cards, on each of which will be
written a brief description of an operation. Can we write
an algorithm which produces convex terraces instead of
starshaped terraces? Yes. Can we guarantee that the
multistoried structure so produced occupies no more space
than the output of 3msp does (i.e. can we still get a
IV(G)I*(IE(G)12)**2 estimate)? Yes. Do we pay a price for
this more desirable outcome? Yes. But an acceptable one.
The proof of correctness of the new algorithm, which we
shall call multilevel convexbody/pole (3mcp), is much less
elementary than the foregoing proof given for 3msp. In
consequence, we will only give an outline of the 3mcp
algorithm. The interested reader who is conversant with a
little analytic number theory can easily fill in the
details.

36

'-AK - J. £I.,. T. ' P(|

The basic idea behind 3mcp is much like that behind 3msp.
Again there are IV(G)[terraces gotten by chopping parts off
a standard "terrace floor plan". The outline goes as
follows.

[l] Number the edges in any way from 1 to IE(G)I.

[2] Number the vertices in any way from 1 to IV(G)I.

[3] Build the standard terrace floor plan as a convex
polygonal area in the following manner. Confine your
attention to the part of the plane consisting of those
points (we will regard this plane as being a complex plane
for ease of geometric description) z satisfying the
inequality

0 <- Arg(z) < pi/4.

Now we look for a set G of Gaussian integers (i.e. points of
the form z - x + iy, where x and y are integers) with
several properties. It must contain more than IV(G)I/8
points, all of which lie in the second quadrant. No two
points in G can have the same argument. If z belongs to G,
and if w is a Gaussian integer such that Arg(w) - Arg(z),
then lwv >- izJ. It must not contain i - 1. It must
consist of small numbers in a certain well defined sense,
which we will simply suggest by an example.

[3.5] The example in (3]. Imagine that IV(G)I - 77. The
set G must have at least 10 members, since 77/8 = 9.625. If
we take

zEl] - 6i - 1
z[2J - 5i - 1
z[3] - 4i - 1
z[4] - 3i - 1
z5] - 5i - 2
z[6] - 2i - 1
z[7] - 5i - 3
z[8] - 3i - 2
z[9] - 4i - 3

zElO1 - 5i - 4

we have the desired kind of G, with its members arranged in
order of increasing argument (i.e. points such the slopes of
the segments joining them to 0 + iO are -6,-5,-4,...,-5/4).
The reader can easily see in what sense they are the
smallest such points, and how they are related to the Euler

37

rn

*1¢

totient function phi. Now we build the cumulation sequence.

The cumulation sequence is defined by setting

c[J.J = zCl] = 6i - 1
c[2J = c~l) + z[2) = lli - 2
c(3J = c[2J + z[3J = 15i - 3

cjl0) = c[9] +z[10] = 42i - 19

With this information at our disposal we form a vertex
sequence

v[0J = Oi + 61
vCl) = v[0) + c~l] = 6i + 60
v(2J = v[OJ + c[21 = lli + 59

vjl0) = v[0J + c[lO)] 42i + 42

Forget about a complex structure on the plane now. Take the
points

vC0) = (61,0)
v(11 = (60,6)
v[2J = (59,11)

v(9] = (38,37)

v[10) - (42,42)

in the XY-plane and form

v[ll] - (37,38)

v[19] - (6,60)
v(20J - (0,61)

by reflection in the line y - x. Next we can reflect these
21 points in the Y-axis to get

38

v[21] - (-6,60)
v[22] - (-11,59)

v[40] = (-61,0).

Finally we reflect these 41 points in the X-axis to get

v[41] - (-60,-6)

v[79) - (60,-6)

At this point we form the convex hull of these 80 points. It
is a convex polygon with 80 vertices v(0),v(l),...,v(79) and
80 sides, and every vertex v(i) is an extreme point of this
convex set.

Thus, in this example of representing an arbitrary graph
with with 77 vertices, we constructed a polygon with 80
sides (the smallest multiple of 8 exceeding 77). This
polygon P has diameter equal to 120, and therefore area less
than 14400. The symmetry group of this polygon is either
D[4], the 8-member dihedral group of symmetries of the
square, or a group which has D[43 as a subgroup. The reason
for this is in the way P was constructed. The whole idea
was to get a lot of short sides with (of course) different
slopes and endpoints belonging to the integer lattice of the
XY-plane. These slopes were all to be less than -1. They
would be assembled to make the "east to northeast eighth" of
P by joining a side with algebraically larger slope by its
lower right end to the upper left end of a side with
algebraically smaller slope. This would produce something
looking like the right half of a haystack as shown at the
top of the next page:

39

This configuration would be reflected in the line y = x.
Then the original configuration would be joined to its
mirror image by a short line segment of slope -1 in the
obvious manner. This completes the full description of the
Quadrant 1 portion of P. It contains more than IV(G)I/4
line segments (i.e. at least 20 in this example). This
complete upper right quarter of P, in turn, would be
reflected in the X-axis to get the whole right half of P.

This right half of P would then be reflected in the Y-axis
to produce all of P. It is clear that the area of P is less
than 80**3.

[4] We now have a standard terrace floor plan. It is a
convex polygon with more than JV(G) I edges. We note that
each endpoint of each edge of this polygon is an extreme
point of the convex set K consisting of P, together with its
interior. The area of K (or of P, if you prefer) is less
than IV(G) I**3. This follows from elementary analytic
number theoretic considerations [LE56, pp. 120-121] of the
average order of magnitude of the Euler totient function
phi. For each vertex v of G we customize the terrace
corresponding to v in a standard way we pick, once for all,
two extreme points of K which will not correspond to any
edge. Then we build a one to one correspondence between the
edges of G and some of the other extreme points of K. Now
take the terrace corresponding to the vertex v of G. On it,
locate all the extreme points corresponding to edges of G
which are incident on v. In addition to these edges(there
must be at least one, since G is biconnected) locate the two
extreme points which do not correspond to any edge of G. Now
form the convex hull of all the points you have just
located. This convex hull, which we shall call H(v) is
nondegenerate (i.e. has positive area) since it contains the

40

FAA".%"

three noncollinear points mentioned immediately above. The

terrace T(v) corresponding to the vertex v of G is the set

T(v) - f(x,y,h(v)): (x,y) belongs to H(v)}

where h is any numbering of the vertices of G.

[51 Now it is possible to complete the structure
corresponding to the graph G. This output from the 3mcp
algorithm is a subset of XYZ-space built as follows. It
contains the terrace T(v) for every vertex v of G. These
terraces are of course subsets of level planes, are pairwise
disjoint, and are stacked up vertically above one another.
The output structure also contains one pole for each edge of
G. The pole L(e) corresponding to edge e of G has the
obvious up/down extent. There are exactly two terraces
corresponding to the two vertices of G which are incident on
e. Call these terraces T(v) and T(W). The up/down extent of
L(e) lies between the heights H(v) and h(w). Clearly the
pole L(e) misses all terraces other than T(v) and T(w).

This ends the construction of the output of 3mcp. The
heights of the terraces are pairwise unequal positive
integers. The "footprints" of the poles are pairwise unequal
integer lattice points in the XY-plane. In fact they all
lie on the boundary of K, among its extreme points. Thus
the algorithm vercomes the problem of scale. The output
structure, i.e. the drawing of G, is IV(G)I stories high and
its footprint is contained in a convex set of area
IE(G)I**3. Thus we have a IV(G)I*IE(G)I**3 bound on the
size of the "solid flow diagram".

I41!

8.5 The Basketweave (2.5b) Representation of Nonplanar Graphs

The basketweave algorithm (2.5b) draws a graph in a plane,
but with crossovers. Its output is similar in looks and
spirit to that of the jailcell algorithm (2jc). Its input
is the adjacency matrix of a graph G with iE(G)I edges and
IV(G)I vertices. It acts as follows.

[2 Number the vertices in any way. Represent the ith
vertex by a brick with horizontal extent from x - 1/2 to
x - IE(G)I+ 1/2, and with vertical extent from y - i - 1/4
to y - i + 1/4. Thus the brick is IE(G)I by 1/2, and its
center is at height i.

[2] Number the edges in any way. Suppose the jth edge
joins vertices i(l,j) and i(2,j) in the graph G.
Represent the jth edge by a pole whose points all have x
coordinate equal to j. Assume, without loss of generality,
that i(l,j) > i(2,j). We want to have this jth pole join
brick i(l,j) to brick i(2,j) but not touch any other
brick. This is accomplished by having it tunnel under bricks
at altitudes between i(2,j) and i(l,j). More on this
presently.

[3] Consider the ith brick again. It touches a
collection of poles. The common x coordinate of all the
points on the leftmost pole in this collection will be
called L(i). The common x coordinate of all the points
on the rightmost pole on this collection will be called
R(i). We now erase part of the ith brick to get it in its
final form as

B(i) - {(x,y): L(i) - 1/2 <- x <- R(i) + 1/2,
i - 1/4 <- y <- i + 1/4}.

The ith brick goes only as far across the page as is
necessary to get it to touch all the poles corresponding to
the edges which touch the vertex it represents.

[4] Consider the jth edge again. The corresponding pole
consists of points whose x coordinate is j, and whose y
coordinate lies between i(2,j) + 1/4 and i(l,j) - 1/4.
Consider any positive integer i such that

i(2,j) < i < i(l,j)

If there is a point of B(i) whose x coordinate is equal

42

to j we must drive the corresponding part of the jth pole
under the brick B(i). Note that we do not regard this
logically as removing this part of the jth pole, merely as
virtually dropping this part to the other side of the sheet
of paper on which it is drawn. The part of the jth pole we
will drive under B(i) will be the segment

{(j,y): i - 5/16 <- y <- i + 5/16}.

The visual effect of this mode of drawing is like a birdseye
view of a bunch of parallel roads (the bricks) which are
elevated one level above ground. There are, additionally, a
bunch of north/south wires (the poles) at ground level. But
each end of each wire rises up from ground level to attach
to a road.

[5] Use some tunnel-under symbol at each point where part
of a pole is moved (virtually) from the front of the sheet
of the paper to the back (or from the back to the front) if
you wish.

At this point the drawing is finished. It looks like a
simple-minded basketweave in which every pole tunnels under
every brick it meets, except the bricks at its two
endpoints. Once again there is no problem of scale. The
poles have integer x coordinates. The centers of the
bricks have integer y coordinates. The entire drawing
occupies a IV(G)I + I by IE(G)I + I rectangle. All flows
are vertical. All operation boxes (the bricks) run
horizontally across the page. The tunnel-unders are
obvious, even in the absence of a back line removal
procedure and a tunnel-under symbol. A pole tunnels under a
brick if and only if that brick is not attached to the top
or the bottom of that pole.

43

9.0 Advantages of YLYK, Ltd. Graph Representations

The basketweave algorithm (2.5b) is the sole point where the
"extent of nonplanarity" of a graph arises as a pictorial,
rather than as a merely logical, consideration in the work
being reported upon. If two different drawings of the same
ancestral flow diagram are both done in basketweave fashion
(i.e. both consist entirely of "horizontal" bricks and
vertical poles, some of which poles tunnel under bricks) we
would regard one of the two as superior if it had fewer
"crossovers" (places where a single pole tunnels under a
single brick). Finding such a drawing, i.e. one with a
minimal number of crossovers probably amounts to solving the
crossing number problem [GJ79], which is NP-complete. For
large graphs this is a costly procedure. As noted elsewhere
in this report, system design usually proceeds in top-down
fashion. Hence most flow diagrams considered have only
about 20 boxes.

Most of the time 2.5b will produce a drawing with no more
than 2 crossovers for graphs with at most 20 nodes. Two
possibilities arise. The graph in question may be planar.
In this case the jailcell algorithm (2jc) will produce a
planar jailcell drawing. If the graph in question is not
planar then we can settle this case of the crossing number
problem (possibly accepting a time penalty if the graph has
many more than 20 vertices, which is unlikely as noted
above), and see whether there are more crossovers than
necessary in the drawing which is the output of 2.5b. In
the unlikely event that there are too many crossovers, it
remains to remove the superfluous ones. An algorithm to do
this is a Phase 2 goal. A simpleminded and expensive
algorithm would be simply to generate all possible 2.5b
representations of the graph and look through the collection
for one with the minimal number of crossovers.

Implicit in the foregoing is the obvious utility of a
basketweave drawing of a flow diagram. Both the jailcell
and the basketweave approaches offer a common solution to
the problem of spaghetti flow diagrams, undisciplined
unstructured messes with sinuous merging crossing flows, and
boxes with no consistent orientation to provide appropriate
visual cues.

The solution is "horizontal" bricks replacing all boxes of
whatever shape. The operation is written on the brick. The
flows are, without exception, vertical poles. Hence there is
no possibility that flows can merge or cross. Flow begins

44

at an obvious source and moves systolically, with downward
flow and occasional upward ebb, and systematically, tending
ever downward toward an obvious sink. No two operation
bricks are at the same height. Hence there is a natural
labelling scheme. Label the operation written on a brick
with the height of that brick. Figure 3.2 of Appendix E
resembles the output of 2.5b for a nonpianar flow diagram,
and Figure 4.3 resembles the output of 2.5b for a planar
flow diagram. Observe how much more orderly and readable it
is than the equivalent Figure 4.1

Flow diagrams are the natural high level language in which
system design should be expressed. The closest competitor,
written English, is woefully inadequate because of its
ambiguity and its inability to give natural and brief
expression to notions of adjacency, previous state, and next
state. The fact is, however, that they are seldom used in
the early stages of system design. Indeed they are often
absent from all stages of system design.

Why is such a natural approach, free from all dependence on
a choice of programming language, so widely eschewed? Two
parts of the answer are spaghetti and scale. Before the
algorithmic approaches reported on here, humans and their
drawing aids simply tended to produce bad drawings of the
flow diagrams implicit in a rough overview of the design of
any fairly complex system. After a few boxes have been
drawn the problem of scale occurs, not as a mathematical
abstraction but as the need to put an operation box into an
unanticipatedly awkward spatial relationship with a bunch of
already drawn operation boxes. The result is an unnatural
placement of the new operation box and a spaghetti set of
flows between it and the already existing boxes. Once the
initial flaw appears the problem ramifies rapidly. The
problem is reminiscent of VLSI design, in its obvious need
for algorithmic remedies. And the solutions reported upon
here are similar in spirit, though considerably different in
detail, from those solutions.

In summary, 2jc and 2.5b do more than enable us to draw
readable flow diagrams. They enable us for the first time
to draw compact flow diagrams, and these compact flow
diagrams (amazingly) have the added advantage that they are
more readable than all but the few best flow diagrams
produced in conventional ways.

In particular, algorithm 2jc enables us to draw planar
graphs compactly and without the problem of scale which has

45

plagued all previous algorithms for imbedding planar graphs
of arbitrary degree, and algorithm 2.5b enables us to draw
nonplanar graphs in a way which approximately minimizes the
number of crossings and which therefore indicates the
"amount" and "location" of unstructuredness of flowcharts
based on those graphs.

It is time to reexamine the whole matter of whether and when
to use the power of flowcharts in the design of large,
complicated systems.

46

10.0 Better Languages for Nonplanar Algorithms

The objections of Dijkstra [D168] and others to the use of
the GOTO statement is based on the fact that it is hard to
read and understand "spaghetti code"; that is, code in which
a single function is distributed throughout a large program
but logically connected by unconditional branches. What
Dijkstra realized was that it is easier to write spaghetti
code using the powerful and unconstrained GOTO statement
than it is to write such code in a more constrained language
like Pascal. This in itself, however, is not reason enough
to banish the unconditional branch from the programmer's
repertoire of tools; the use of the GOTO statement does not
always result in spaghetti code. In fact, as has been
demonstrated above, there are situations in which
unconditional branches are desirable or even inevitable.

Some programming language designers have come to the
conclusion that the spaghetti code problem is an artifact
not of the unconditional branch, but rather of the
"imperative programming paradigm" which is based on the Von
Neumann model of computation and which underlies most
currently popular programming languages (LISP being the only
common exception.) Over the past several years a variety of
new programming paradigms have been developed which allow a
programmer to use the power of unconditional branching
(often implicitly) while avoiding the pitfalls of spaghetti
code.

Ada, the DoD's language of choice, incorporates some ideas
from one of these new paradigms, namely the package
paradigm. In Ada, it is possible to write a program as a
collection of packages, each of which knows only about the
interfaces (not the internal implementation details) of the
other packages in the system. This invisibility of the
internal structure and state of packages is called
information hiding. These packages then communicate with
one another to accomplish the work of the program.

The package paradigm is quite similar in concept to several
other recently developed programming paradigms, notably the
process, dataflow, and object-oriented paradigms. In each
of these paradigms, an environment consists of a population
of entities (objects, dataflow nodes, or processes), whose
internal details are invisible to the other entities in the
population. A program in one of these paradigms consists
basically of a connection map, which specifies what pairs of
entities can communicate with one another, and a sequence of

47

initial communications, which are sent to specified entities
in the environment. These intial communications trigger
other communications among the entities in the environment,
and eventually a communication or sequence of communications
is transmitted back to the "outside world" as the output of
the program.

The rationale behind these paradigms is that if programs can
be broken up into a number of self-contained entities, the
entities can be made simple enough so that they are easy to
understand, write, debug, and maintain. Since no entity can
"see" the internal details of another, no entity can be
written in such a way that it depends on another's
implementation, which greatly reduces the probability that a
change in one part of a program will cause unexpected errors
in another, unrelated part.

The primary difficulty with these paradigms is that while it
is often easy to write the code for the individual entities,
it is often quite hard to visualize the overall structure of
the program, with the result that integration of the
entities into a single large program presents substantial
difficulties. Since each entity generally has an interface
to the environment which contains a number of different
input possibilities and a number of different behaviors for
each input possibility, the interactions of even a small
population of entities can become quite complex.

As an example of these difficulties in visualizing the
global behavior of a system (in this case an object-oriented
system), we present appendix C, which contains a Smalltalk
program. It is not within the scope of this report to
provide a Smalltalk tutorial, but we will mention a few
things to make the example understandable. Each entity in
Smalltalk is an object. Each object is a member of a class.
Each class defines the types of messages which objects of
that class can respond to. A message has a receiver (which
is an object), a selector, and a parameter list. So for
example, the message "zensort step3l5O:input." has receiver
"zensort" (zensort is an object), selector "step3150:", and
parameter list "input". When an object (zensort, in the
case of our example) receives a message, it looks at its
class definition and determines whether it has a method to
implement that message. If not, it creates an error. If
so, it executes the method. A method is simply a sequence
of communcations to be sent. In our example, since
"zensort" is of class "Shuffler", it looks in its class
definition and finds a method called "step3l5O:" (the first

48

method), so it sends the messages associated with that
method (starting with "(aList at:l) > (aList at:2)"; the
Itempi notation indicates that the method creates a
temporary variable called "temp".)

The environment for this program contains only one object,
of type "Shuffler". This object can receive messages of 4
types (step3150, step3350, step3550, and step3650). Each
message must have a list as its parameter. The response to
each message is quite simple: the object generally compares
two of the values in the list, then (depending on the result
of the comparison) sometimes swaps two values in the list,
and finally returns the (possibly modified) list to the
object which sent the message (which in this case is always
itself.) The program itself consists of the initial
communications which appear at the beginning (starting with
"input :- Array new:3" and ending with "zensort
step3150:input.") It is evident that an object of class
"Shuffler" performs some kind of sorting or permutation
procedure; it may not be so obvious at first glance that it
actually implements the K(3,3) Zensort algorithm.
Nevertheless, "Shuffler" does implement K(3,3) Zensort, and
appendix C is an example of a system with only one object
whose global algorithm is nonplanar. At the same time,
appendix C illustrates how a language like Smalltalk (which
is a standard object-oriented language) can replace the
hard-to-understand GOTO statement with a simpler primitive
(in this case, message passing), and produce programs which
are easier to read (for one familiar with the language) than
a BASIC or FORTRAN program implementing the same algorithm
would be to an experienced BASIC or FORTRA14 programmer. This
program was written and tested in Digitalk Smalltalk-V.

A number of references dealing with the object-oriented,
dataflow, and process paradigms appear in the bibliography
of this report.

49

11.0 What are Nonplanar Algorithms Good For?

As we noted in the previous section, nonplanar algorithms
arise naturally as descriptions of the global behavior of
complex programs written in object-oriented, dataflow, or
process-paradigm languages. One of the barriers to the
widespread adoption of these languages is that, while the
behavior of individual entities is easily specified and
understood, the global behavior of the system is often
forbiddingly complex. None of the standard representation
techniques has, at the present time, proved equal to the
task of specifying the global structure of large programs in
such languages. This is important because a good,
understandable representation of the global behavior of a
program in such a language could greatly simplify the system
integration task.

A particular class of object-oriented systems are called
cellular automata. These systems have been used to describe
biological phenomena as well as high-energy physics, and are
the objects of increasing amounts of study. It is possible
that nonplanar flowcharts will prove valuable in the
description of the complex global behavior of such automata.

Finally, nonplanar flowcharts should, as indicated above, be
applicable to the description of large imperative-paradigm
programs which incorporate error control in an otherwise
structured framework.

All of these application areas are open for investigation in
a phase-2 effort.

50

IJJMW~l I

11.0 Appendix A: The Objectives of the Reported Research Effort
as contained on pages 2 and 3 of the award/contract
document.

PART I - THE SCHEDULE

SECTION B - SUPPLIES OR SERVICES AN PRICS/COSTS

0001 RESEARCH

The contractor shall furnish the level of effort specified in Section F,
together with all related services, facilities, supplies and materials needed
to conduct the research and prepare the reports described below. The research
shall be conducted during the period specified in Section F.

O001AA

a. Using appropriate local information, to produce a global "solid'
flow diagram (i.e. a very special kind of representation of a digraph in
3-space);

b. Using appropriate local information, to determine whether there is a
planar equivalent of this solid flow diagram;

c. Producing an optimal drawing on paper of a flow diagram if that
diagram is nonplanar. An optimal drawing is one which has a minimal number of
crossovers;

d. Moving from local information to pictorial representations
(3-dimensional if necessary) of the flow diagram which are extremal in any one
of a variety of ways. One type of extremality would be a display which would
suggest a maximally parallel implementation which would buy speed at the cost
of using several processors. Such representation techniques may help in
understanding a program written from, or corresponding closely to, such a flow
diagram.

e. Examining nonplanar flow diagrams in their own right with a view to
understanding the kinds of programs which correspond to them. During the last
twenty years we have learned a lot about how to read and write 'good"
structured (i.e. planar) programs. Now that we know that nonplanar structures
exist, and cannot be made to go away, it is time to seek for a comparable
improvement in our ability to understand snarls and their relationship to the
larger structures they reside in;

f. Examining 'batching', an analog of pipelining which is appropriate
to snarls and which promises many fold speedup of programs involving snarls;

g. Ascertaining whether some biological systems act in ways which seem
naturally to correspond to code with snarls, and attempt to give examples of
code with snarls which is in some way superior to planar code for carrying out
the same task;

Page 2 of 24 Pages YLYK Ltd
F49620-86-C-0103

%It

h. Examining whether unbounded cellular automata, which are more
general then Turing machines, can be used as a basis for 03-dimensional"
computer languages which need no GOTOs. In this way we might be able to
exercise GOTO after all. But the process would be general and scientific,
rather than merely moralistic ("The writing of structured programs is a mark a
good taste. So write them!m) or improperly based (on unjustified planarity
assumptions about flow diagrams).

0002 REPORTS

Reports identified below shall be prepared in accordance with Exhibit A to
this contract and delivered in accordance with Section F.

O002AA FINAL REPORT

Other reports which are or may be required under this contract are identified
in Sections H and I.

See Section H, Paragraph 3 for pricing information.

SECTION D - PACKAGING AND MARKING

1. PACKAGING AND MARKING

Pack in accordance with standard commercial practices and mark for the
addressee shown in paragraph 2 of Section G.

SECTION E - INSPECTION AND ACCEPTANCE

1. INSPECTION AND ACCEPTANCE

Inspection and acceptance of all deliverable items called for under this
contract will be performed by AFOSR, Bolling AFB DC. Official notification of
acceptance shall be made by the Air Force Office of Scientific Research,
Directorate of Contracts.

SECTION F - DELIVERIES OR PERFORMANCE

1. PERIOD OF PERFORMANCE AND DELIVERY

The supplies and services described in Section B shall be delivered or

performed during the following period:

OOOAA 15 Aug 86 through 14 Feb 87.

002AA FINAL REPORT DUE 14 Apr 87

Page 3 of 24 P3ges YLYK ltd
F49620-86-C-0103

I- --------- .

12.0 Appendix B: Two Versions of Zensort in Basic

Presented Below is a structured (Pascal-like) version of the
K(3,3) Zensort algorithm, implemented in BASIC. It could
not be implemented conveniently in Pascal, since Pascal does
not allow branches (GOTO's) into the range of loops from
outside the loop branched into. note that there is only one
branch (GOTO) statement in this implementation, but it does
branch into a loop at statement 3550.

REM *************************************
REM *
REM* THIS IS A MICROSOFT (R) QUICKBASIC (C)
REM* PROGRAM WHICH IMPLEMENTS THE K(3,3)
REM* ZENSORT ALGORITHM IN A STRUCTURED WAY.
REM * NOTE THAT THIS PROGRAM WOULD NOT WORK
REM * IN PASCAL, SINCE THE BRANCH TO 3550 IS
REM * A BRANCH OUT OF ONE BLOCK AND INTO ANOTHER,
REM * WHICH PASCAL CONSIDERS ILLEGAL.
REM *
REM

INPUT "Enter A, B, and C separated by commas"; A, B, C

QUITFLAG - 0 ' 0 represents FALSE; -1 represents
TRUE.

WHILE (NOT QUITFLAG)
ALEBFLAG - 0

IF (A <- B) THEN
3550 IF (B <- C) THEN QUITFLAG - -1 ELSE ALEBFLAG -1

END IF

IF (NOT QUITFLAG) THEN
IF ((NOT ALEBFLAG) OR (A > C)) THEN

TEMP - A : A - C : C - TEMP ' Switch A and C
IF (A <- B) THEN GOTO 3550

END IF

TEMP - B : B - C : C - TEMP ' Switch B and C
END IF

WEND
PRINT
PRINT "The numbers in sorted order are: '; A, B, C

Presented Below is an unstructured (FORTRAN-like, without
loop statements) implementation of the K(3,3) Zensort
Algorithm.

REM ***
REM *
REM* THIS PROGRAM IS AN UNSTRUCTURED IMPLEMENTATION
RE4 * IN MICROSOFT (R) QUICKBASIC (C) OF THE K(3,3)
REM* ZENSORT NON-PLANAR SORTING ALGORITHM.
REM *
REM ***
REM
REM ***
REM *
REM* FIRST WE READ IN THE VALUES OF THE THREE
REM* NUMBERS (A, B, AND C)
REM*
REM ***

INPUT; "Enter A, B, and C separated by commas: ", A,
B, C

3150 IF (A <- B) THEN GOTO 3550 ELSE GOTO 3260
3550 IF (B > C) THEN GOTO 3650

REM *

REM * IF WE GET HERE, THE NUMBERS ARE IN SORTED
REM * ORDER, SO WE PRINT THEM OUT IN ORDER.
REM *
REM ***

3670 PRINT
PRINT "Numbers in increasing order are: "; A, B, C
END

REM ******************** *

REM *IF WE GET HERE, WE NEED TO SWITCH A AND C.
REM*
REM ******************** *

3260 TEMP - A
A-C
C -TEMP

3350 IF (A <= B) THEN GOTO 3550 ELSE GOTO 3460
3650 IF (A > C) THEN GOTO 3260

REM ******************** *

REM*
RE IF WE GET HERE, WE NEED TO SWITCH B AND C.

REM*
REM ******************** *

3460 TEMP - B
B-C
C-TEMP

GOTO 3150

13.0 Appendix C: A Version of Zensort in Smalltalk

"Note that our word-processor lacks the up-arrow
character which Smalltalk-80 uses to indicate the
function which returns a value to the calling
object. We substitute the word Return for this
character in the program below."

"HERE IS A SMALLTALK PROGRAM TO PERFORM THE K(3,3)
ZENSORT PROGRAM. IT MAKES USE OF AN OBJECT CALLED
zensort OF CLASS Shuffler. THE DEFINITION OF THE
METHODS FOR CLASS Shuffler APPEARS BELOW."

I input zensort I "temporary variables"
input :- Array new:3.
input at:l put:3.
input at:2 put:l.
input at:3 put:2.
zensort :- Shuffler new.
zensort step3150:input.

"HERE ARE THE METHODS FOR THE Shuffler CLASS"

step3150: aList

"Perform boxes 3150 and 3260 of K(3,3)
Zensort algorithm"

I temp I

(aList at:l) > (aList at:2)
ifTrue: [temp :- (aList at:l).

aList at:l put:(aList at:3).
aList at:3 put:temp.
Return(self step3350: aList)]

ifFalse:[Return(self step3650: aList)].

,, ,I ... ', t' ,' ' ' ' - 9 z''

step335O: aList

'Perform steps 3350 and 3460 of K(3,3)
Zerisort algorithm"

Itemp I
(aList at:l) > (aList at:2)

ifTrue: [temp :- (aList at:2).
aList at:2 put:(aList at:3).
aList at:3 put:temp.
Return(self step3l5O:aList) 3

ifFalse: (Return(self step365O:aList) 3.

step355O: aList

"Performs steps 3550, 3260, and 3460 of the
K(3,3) Zensort algorithm (note that 3260
and 3460 are also performed by other methods)"

Itemp I
(aList at:l) > (aList at:3)

ifTrue: (temp :- (aList at:l).
aList at:l put:(aList at:3).
aList at:3 put:temp.
Return(self step335O:aList)]

ifFalse:[temp :- (aList at:2).
aList at:2 put:(a.List at:3).
aList at:3 put:temp.
Return(self step3l5O:aList)].

step365O: aList

"Performs steps 3650 and 3670 of K(3,3)

Zensort algorithm"

(aList at:2) > (aList at:3)
ifTrue: (Return(self step3S5O:aList) 3
ifFalse: (Return aList].

14.0 Appendix D: An Example of the Operation of the Jailcell
Algorithm

THES OR1II.AL. (rRIpt4.

To FACC -- EI W "exc

~~oj~IM1jjjap OFT~ 'grm.C

1014VOIfi--omeLi %. .ATis

e~~ Wa05r

AFTSA %Im~ep& ft. h

A14R ISP~~d. ONE jatS o-'.

4?AFTEZ tMr&gD,N~(, . ON

lINT'IH WA ̂ At DAF;'"r

$Z(,m jvR ojc

Lts isa,)

15.0 Appendix E: The Technical Portion of the Proposal Which Led
to This Contract

-rpsl CVOW ShM
DEFENSE SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM

Toic Aubp86-12 Q Army O Navy U Air Force ODARPA QD4A
Qs0 QI0 0DCA 0 DMA

Tis Proposed Reduction of flow diagram to unfolded form modulo snarls
by Firm:

SubmttedBy: irm LYK Ltd.

2440 Stone

Ades Ann Arbor MI48105
city State - Zip Code

Submitted To: (Activity Identified with the topic) AFOSR/XOT

Building 410, Room A113

Adress - Bolling APB

C4tY Washington state DC Zip Code 20332-5000

Small Business Cerification:
The above firm certifies illis a small business firm and meests the definition stated in the Small Business Act 15 U.S.C.
631 and i the Delmition Section of the Program Solicitation.

"he above firm certifies that it-.......does X !.does not qualify as a minority or disadvantaged small business as
defirsed in the Definition Scinof the Programr Announcemnert"

The above firm certifies tha It qualifies as a woman-owned emal business firm
Yes XN

Disclosure permission statement as follows:I
All data on Appendix A is releasable information. All data on Appendix S. for an awarded contract. is also releasable.
-Win you permit the Government to disclose the information on Appendix B. If your proposal does niot resul in an award.
to any party that may be mierested in contacting you for further information or possible Investment?

Number of employees including all affiliates (average for preceding 12 months): _ _ _4

PropeeCs(phei: $ 499

Puuposed Durain: L-imonihs (not to exceed sIx months).
Roec Me merit .1 go cort official Mneas)

NN0 Bob Blakley Nae -Bob Blakley /
TOO ,& V20T j Two of Presenf VWLtd.-

Tai~phor; 313-94-1291 e ephoneA-9 1 9

For any purpose other than to evaluate the L, this data except Appendix A and B shall not be disclosed out.
side the Government and shall not be duplicated, use, or disclosed In whole or In part, provided that If a contract Is
awarded to Ot proposer as a result of or Inronnection with the submission of this data, the Government shall have
the right to duplicate, use, or disclose the data to the extent provided In the funding agreement. This restriction does
not limit the Government's rdgh to use Information contained In the data If It Is obtained from another source without
restriction. The data sut*Wc to this restriction Is contained In page(s)_____ of this proposal. Failure to fill In all
appropriate spaces may cause your proposal to be disqualified.

Nothing on this page Is classified or proprietary Informationldata
Proposal page No.1I

UJ. DEPARTMENT OF DEFENSE

SMALL BUSINESS INNOVATION RESEARCH PROGRAM
PHASE I - FY I=IS

PROJECT SUMMARY

Topic No. AZMf-] 9 Military Department/Agency Air .orre

Name and Address of Proposing Small Business Firm

YLYK Ltd.
2440 Stone
Ann Arbor, Michigan 48105

Name and Title of Principal Investigator

Bob Blakley
Prtmtpntd. YrYK A.1.rl

Title Proposed by Small Business Firm

Reduction of flow diagrams to unfolded form modulo snarls

Technical Abstract (Limit your abstract to 200 words with no classified or proprietary information/data.)
This proposal gives what may be the first examples of nonplanar flow diagrams, i.e.
flow diagrams describing code which is intrinsically incapable of having all
unconditional branches removed. Some reflection on the significance of these examples
leads to a realization that a variety of desirable goals in software engineering are
now both desirable and within reach. It is proposed to seek to attain several goals
including: developing an algorithm which takes purely local information on
relationships between parts of a program and produces a global flow diagram;
developing an algorithm for determining whether this diagram is planar in the
graph-theoretic sense; developing an algorithm which takes the solely local
information in a diagram known, on mathematical grounds, to be planar and produces a
plane drawing of it without crossovers; developing an algorithm which takes the solely
local information in a demonstrably nonplanar diagram and produces a plane drawing of
it which has a (provably) minimal number of crossovers; developing algorithms for
moving from local information to drawings which are extremely informative in regard to
some chosen aspect of a proposed program; elaborating a theory of "nonplanar" programs
comparable in power, and complementary in scope, to structured programming as a theory
of planar programs; building high performance nonplanar algorithms which, being

tl*%Jn. ' F*iav" e'e nia n1t-iei1-fnrim etP2,,tlvmmA prra

Anticipated Benefits/Potential Commercial Applications of the Research or Development

It is now clear that code which does not conform to the canons of structured
programming is not necessarily bad code. Fully automated routines for moving a
proposed program as far as possible toward structured form promise to yield
simplifications of software design procedures. The class of nonplanar flow diagrams
probably describes many programs and algorithms which are superior from the viewpoint
of speed, memory requirements and other desirable properties of code to their
structured (i.e. planar) opposite numbers.

List a maximum of 8 Key Words that describe the Project.
Unconditional branching, GOTO, structured programming, software engineering,
flowcharts

Nothing on this page Is classified or proprietary informationdata

Proposal page No. 2

NAN ! 12 1 1Q111 61441%I& ' ', ' !11

3

3. Identification and significance of the problem/opportunity.

The cost of producing software, to a large extent a byproduct of the
unproductive labor-intensive use of skilled professionals to write it,
continues to be a burden to DoD and others. The proposed research is
aimed at a return to first principles to increase our understanding of the
interrelationships among the parts of a program or software package. The
research will make nontrivial use of the combinatorial topology of flow
diagrams to produce new methodologies in the design and analysis of
algorithms. We define a flow diagram to be what our intuitive notion of
flowchart suggests, a digraph (i.e. directed graph [W179, p. 9]) whose
adjacency matrix [B077, p. 173] is a 0,1 square matrix with zero trace
[LA66, p. 51]. A more intuitively appealing way to state this definition
of a flow diagram is as a digraph with no more than one arc from u to v
f(for any vertices u, v) and such that its underlying graph [W179, p.
100; BE71, p. 6] is a graph [BE71, pp. 1-8] with no loops [B077, p. 3].

On the one hand, the proposed research will involve a critique and a
reformulation of some of the basic concepts in structured programing
[DA72; JA75; HI72b; JE81; W171; W174] and the theory of structured flow
diagrams [B185; B066; HU82]. This should dispel a widely held
misconception of the meaning of Dijkstra's note [D168] on unconditional
branching and the Bbhm-Jacopini paper [B066] on planar algorithms. It
should also help publicize the consequent need to take account of a
special type of subprogram, called a snarl on page 7 below, when
discussing structured objects.

On the other hand, the proposed research is aimed at producing an
algorithm to build a reasonable global picture of a program from a
complete set of local descriptions of it. This will involve using
nontrivial topological and combinatorial tools. In the best possible
outcome, this research may make it possible to design maximally parallel
(as well as maximally serial) renditions of any given piece of proposed
software based only on this local information. It may also be possible to
use the concept of snarl to search purposefully for the real trouble spots
and the opportunities for speedup or parallelization in very general
software design projects.

Finally, this research may lead to a formulation which allows us,
using cellular automata rather than Turing machines, to do what many
people wrongly believe Bbhm and Jacopini [B066] and Dijkstra [D168] did,
namely read unconditional branching procedures out of the universe of
civilized discourse in computer science.

3a. There are nonplanar flow diagrams.

We must depart from the usual proposal format for a considerable
digression at this point. The topic is nonplanar flow diagrams and code
with unremovable GTos.

*Footnote: All entries in square brackets refer to the bibliographic

citations list contained in Subsection 6b below.

IY

*4

To get down to specifics, it in necessary to start by describing what
the state of affairs is not. A tutorial [JES1] in IEEE Computer, states:

... hM and Jacopini ... demonstrated that three basic
control structures were sufficient to express any
flowchartable program logic. These basic constructs
include a sequence mechanism, a selection mechanism, and an
iteration mechanism.

and more recently a paper [BE85] in the Journal of the ACM states:

BtShm and Jacopini ... showed that any algorithm can be
implemented as a D-chart.

A superficial reading of these coments, or of the BShn/Jacopini
[B0661 paper, might leave a misconception. It is true that there is a
very large class of tasks which Turing machines can carry out, and with
the property that each task belonging to that class can be carried out by
an algorithm expressible by a planar flow diagram (i.e. a flow diagram
whose underlying graph is imbeddable in the plane [W179, p. 591). It is
not true that every algorithm to perform each such a task can be described
by a planar flow diagram. Nor does Dijkstra make this strong claim in the
last paragraph of [D168]. despite an aversion [D176) to GOTO, shared with
Hoare [DA721, Wirth [W171; W174] and others [KE781, so strong that it
sometimes seems they want nothing less than to drop it down the memory
hole. Also there might be tasks people might want performed which cannot
be carried out by any algorithm with a planar flow diagram. But settling
this latter question and finding such tasks might be very difficult,
involving delicate considerations related to Church's thesis [MA77,
pp. 177-205; C089, pp. 790-800).

Despite the obvious importance of the subtle distinction alluded to
in the previous paragraph, nobody has bothered, heretofore, to produce a
demonstrably nonplanar flow diagram. Part of the reason for this is, of
course, the necessity to do a good bit of foundational spadework to
Justify the example, and part may be due to failure to connect the
combinatorial topology of graphs [r1179, pp. 59-631 with this question.

We take this opportunity to remind the reader that a graph is planar
if and only if [W179, p. 62) it contains no subgraph which is contractible
to K(3,3) or K(5).

It is important, however, to see just such nonplanar flow diagram
examples in order to catch the spirit of the proposed research.
Considerations of space make it impossible to provide all the foundational
material here, but the examples K(3,3) ZENSORT and K(5) ZENSORT shown in
Figures 3.1 and 3.2 below make the point quite clearly to anybody who
chooses to study them.

There are numerous planar flow diagrams of algorithms to accomplish
the task of sorting three real numbers, but K(3,3) ZENSORT is nonplanar.
Similarly K(5) ZENSORT is an fntrinsically nonplanar flow diagram
describing an algorithm to sort four real numbers. To verify the
correctness of K(3,3) ZENSORT it suffices to see that it works on each of

the 27 members of the set {1,2,3)(192,3) of lists of three members of the
set (1,2,3). Similarly K(5) ZENSORT is correct if it sorts every one of

the 256 lists belonging to (1,21,2,234. These two rather obvious

5

UGID 3130

IM(C2,) 3140

IS A 2 13150

(Aj3,C) IS RSP1A= WTj~A 3260

is A<4? 3350

L (A.2.0) IS 33PLACI By (A.C9] 3460

(- 15 <C

3550

IS 365

v&M (.11.03670

C an 3680

Figure 3. 1

A f low diagram which def ines the K(3,3) ZENSORT algorithm

vuI

6

3WO (A.3.C.0) 5140

7. A<3 1 5150

(AR,C.3) 5160
IUPUM3 I!
(B.A.C,3)

KillC 5250

US U

(A.I.C.D)
IS UP1ACID my
(A.,B,C) I

is a 1< ?

5450

USI 10

13A< C55 (C53? 5570

NEXT! (A, I,CD) $up0

Figure 3.2

A flow diagram which defines the K(5) ZENSORT algorithm

7

statements can be made precise ~ad proved. In this my we cem verif y
program correctness by reducing -n Infinite problem (dealinag with all

mnember* of the three dimesona real vector specs R (1.2.3) of list@

(rOl)r(2),r(M) of three real numbers, or with all members of a (1 02,3.6))

to a finite one (dealing with all members of (1.2,3)(1t2,3) .of o

(l,23,4{1,,3,)).This verification artifice is io beeping with the
oft-noted 1V166; DI"; 5781 difficulty of understasiding and analyuing the
content of nonpianar flow diagram. Our method of verification of
correctness (ignoring the content ad readability of the description of
the algorithm and merely runing it on a finite, but sufficiently

representative. class of examples) contrasts with the method structured
programing se to suggest (looking at the content of the algertbe
expressed by a planar flow diagram and using this aderstasidiug of the
content and nmaing of the algorithm to verify Its correctoess.) It is
Important to be mre of oe other feature of these two routines. If the
list (3,1,2) is input to 0(3.3) ZRONT the control flow along every edge
of the flow diagram ad through every vertex (i.e. bor) before the anwr
(1,2,3) occurs as output. Similarly, if the list (3,2,1,4) is input to
1(5 511501? the control flows along every edge ad through ewery vertex
before the answer (1,2,3,4) occurs as output.

Whty are the flow diagram shoam In Figures 3.*1 -nd 3.2 intrinsically
iaonplaaar? The ansuw is that they are derived f rem the two basic
nouplanar lanratowski graphs 9(3,3) ad KM5 in the following obvious
sense. Take the graph [1171, pp. 1-61 unerlying (171, p. 2201 the
K(3,3) ZINSWI flow diagram, for mnple. Contract this graph by luming
boxes 3130, 3140 and 3150 together (collapsing the edges betwieem) to form
node 31, snd by lumping ho-se 3650, 3670 nd 36W together to form
node 36. Thes node 32 replaces box 3260, 33 replaces 3350, 34 replaces
3460 nd 35 replaces 3550. At this point Figure 3.1 has been tramsfoud
into figure 3.3. In the sae fashion It Is obvious hew to tarn Figure 3.2
Into Figure 3.4.

At this point we cam give the definaition of a s@arl. A searl is a
subdigrapa 1076. p. 1711 of a flow diagram we underlying graph can be
contracted to either a 1(3.3) or a US). ad is minimal with respect to
this property. Thus Figure 3.1 is mot a s@al. lont if pu remove bases
3130, 3140, 3670 ad 3650 from it (together with the feur obviously
corresponding edges), the remaining beses nd aftes form a sarl.
Similarly Figure 3.2 without besse $130, 5140. 5SS0 an 5590 (and of
course without my of the four ee Which touch my of thee feur hones)
is a snarl. Loosely, them, a searl is a minimal meepiane part of a flow
diagram.

The uNOWT flew diagram cam tie cheactenised OGYO10fl * in the
sense that amy program writtea f rem them met boe an usceItieal branch
somewhere. is 9(5) ZKIORT is Figure 3.2, for example, us heim dram a
crossover in the control flow from the comperisee box 5450 to the
comparison boz 5150. Somebody coding from the rendering of KM5 ZEIMTY
contained in Figure 3.2 might therefore be inclined to put the GOOafter
the comparison IS 3 < 0 ?. but there are may other ways to display the
eam flow diagram. And they would suggest other placements for the amJ?.
The point is that the GOT hs to be in the code somsbore.

To emerie the digression. there isa a gap is the literatwre. waich
the ZEIWORT routines will nwfill. Mosplanar flew diagram exist. so it

II

SS

SI'

54

9

is false to say that all code with unconditional branching is merely bad
code, and can be rewritten. Probably most such code up to now is, in
fact, bad code in used of rewriting. But it is now clear that there are
progr am from which it is impossible to remove a GOTO. This is not to
deny the existence of artifices to use a given program as a basis for
producing a related GOTOless program. Kany such [K741 are known. But,
in a sense which it would take too long to make precise within the
confines of this proposal, those artifices produce merely a related
algorithm, not an algorithm fully equivalent to the one specified by the
original nonplanar flow diagram. In consequence of this fact this
proposal departs from the popular posture of merely viewing GOTO with

disdain. Instead it accepts snarls, and the corresponding GOTful code,
as interesting objects of investigation in their own right and as
essential boundary conditions on any attempt to produce algorithms capable
of producing useful flow diagrams or in other ways structuring software
design on the basis of merely local information about control flows.

The digression is now over.

3b. The problem and the possibilities.

The problem me wish to address in this proposal, then, is this. At
present there Is no automated way to take pieces of local information
(which relate a single instruction, question or subroutine to the objects
it interfaces with) and integrate then into a global picture of the
control flows in a program or larger piece of software. This proposal is
for a project which will solve the problem. The problem is three
dimensional, nt planar, in the sense that not all flow diagrams for
programs hove underlying graphs which are imbeddable in the plane. Every
graph is, of course 1U179, pp. 22-23], imbeddable in Euclidean 3-space.
Bing seemingly first to recognise this complication, YLYK Ltd. is able to
avoid pursuit of the impossible dream of taking a planar approach to
producing understandable visual representations of the global structure of
pieces of software.

In the long term the following goals should be achievable:

Goal 1. Using appropriate local information, to produce a global "solid'
flow diagram (i.e. a very special kind of representation of a
digraph in 3-space);

Goal 2. Using appropriate local Information, to determine whether there
is a planar equivalent of this solid flow diagram;

Coal 3. To produce a drawing on paper of this planar flow diagram if it
exists;

Goal 4. To produce an optimal drawing on paper of a flow diagram if that
diagram is nouplanar. An optimal drawing is one which has a
minimal number of crossovers;

Goal S. To move from local information to pictorial representations
(3-dimensional if necessary) of the flow diagram which are
extreml in any one of a variety of ways. One type of
extremality would be a display which would suggest a maximally
parallel implementation which would buy speed at the cost of
using several processors. Another type of extremality is shown
by Figure 3.1 which is drawn so that all downward control flows
are on the right half-page. In Figure 3.2 all downward flows are
on the left. Such representation techniques may help in

•~ ~~~~~~~ M0M&Ao 'Al lWWI " t '%''r ',.%

10

understanding a program written from, or corresponding closely
to, such a flow diagram.

Goal 6. To examine nonpianar flow diagram in their own right with a view
to understanding the kinds of programs which correspond to
then. During the last twenty years we have learned a lot about
bow to read and write "good" structured (i.e. planar) programs.
Now that we know that nonplanar structures exist, and cannot be
made to go away, it is time to seek for a comparable improvement
in our ability to understand snarls and their relationship to the
larger structures they reside in;

Goal 7. To examine "batching", an analog of pipelining which is
appropriate to snarls (as we shall briefly indicate in Section 7)
and which promises manyfold speedup of programs involving snarls;

Goal 8. To ascertain whether some biological systems act in ways which
seem naturally to correspond to code with snarls, and atteupt to
give examples of code with snarls which is in some way superior
to planar code for carrying out the sane task;

Goal 9. To examine whether unbounded cellular automata, which are more
general [W055] than Turing machines, can be used as a basis for
"3-dimensional" computer languages which need no GOTOs. In this
way ie might be able to exorcise GOTO after all. But the process
would be general and scientific, rather than merely moralistic
("The writing of structured programs is a mark of good taste. So
write theml") or improperly based (on unjustified planarity
assumptions about flow diagrams).

These nine points are a tall order. We must now sort them out into
Phase I, Phase I and Blue Sky.

4. Phase I technical objectives

4a. An example of unfolding a flow diagram.

As in Section 3, we must digress to consider an example. The reason
is the same as in Section 3: the novelty of the material, and the
necessity to have a concrete example of what is desired and the sense in
which it is possible. We have seen examples of (truly) nonplanar flow
diagrams. Many diagrams one sees in the literature, however, are merely
inept renditions of planar flow diagrams. The renditions in question are
hastily drawn and consequently have crossovers. It is important to remedy
these flaws in existing planar flow diagrams and see to It that they do
not creep into our drawings of future flow diagrams if those diagrams are
planar In the graph theoretic sense, Recent TLYU Ltd. experiments with
simplifying flow diagrams - this proposal will speak of "unfolding"
diagrams hereinafter - have led to a viewpoint pertly analogous to and
partly at variance with Dijkstra's attitude (D176b; J81] toward code, in
the sense of a program written in ADA, FORTRAN, soae assembly language or
what have you. So this proposal will speak of "unfolding spaghetti
diagrams" to produce "structured diagrams", concepts which we will make
more explicit below. In one regard, this approach embodies higher hopes
for flow diagrams than Dijkstra has for code. He seems to feel that it is
easy to go from bad spaghetti code to badly suboptimal repulsive

q4

II

lbl

12

bard-to-understand structured code. It soms so far that the unfolding
process, even starting from quite ugly spaghetti flow diagrams, should
produce fairly satisfactory 'structured" flow diagram. The reason for
thi is that a flow diagram for process P has far fewer pieces (and most
of the pieces are more naturally related to P) than a working program in
amy language In which programmers write actual running code today. In
anothsr regard, our expectations are "lower" than Dii kstra's. There will
be no exrcise of "unstructurodw flow diagram (i.e. of flow diagrams
which cannot be embedded In the plane). Such nouplanar objects,
characterised by the presence of snarls,* are here to stay. They must be
understood In their own right, and may turn out to be Important objects in
computer science.

To set the stage let us begin with an example, an ostensibly
nonplanar flowchart taken from 13L73, p. 2791 (with a small modification
of so importance to the purposes of this proposal. The boxes contain only
smbers, rather tham questions or Instructions, because the topology is
all that counts). Vbat oae finds In 11073, p. 2791 is, essentially,
Figure 4.1. It has flows going every which my (i.e. north, south,
east ad vest). It has tw crwoovers (despite which fact we will me
that It Is planar). It has flow merging into each other at four
locations. It io spaghetti. flow look at Its unfolded version In Figure
4.*2.* It is am clearly planar (whence we on that the crossovers in
Figure 4.1 vere unnecessary sed misleading). The flow go only north and
south. There are no crossovers. Flow go from node to node in separate
strems without joining .me mother. Figure 4.2 is the sme collection of
boxes and the *e collection of flow. But Figure 4.2 makes more sense
them Figure 4. 1. It also epose subroutines in a my obvious to the most
superficial viewer. Obviously, also. 0 is a source (i.e. a box with so
arrow pointing In toward it). Similarly every ome of the following ets
of boxes is a oink (i.e. a structure with so arrow pointing outward)

(1. 2, 3, 4, 5, 6. 7, 8, 9, 10, 11, 12, 13);
(2, 5, 3);

(3).

Them facts are obvious from Figure 4.2 or figure 4.3 but not from
the equivalent, but Ineptly drem, Figure 4.1.

This ends the digressies.

4b. The general idea of onfolding a flow diagram.

With these euwafpa in mind we set out to formalise the Idea of
unfolding a flow diagam. Ve begin with the adjacency matrix (5064; U71,
pp. 41-43 1, or (Rim) mets of a f low diagram. Ve let

MX~j a 0

If there is so flow from box I to box J, but

C(i.j) - 1

If there Is a flow from box I to box J. The 14 by 14 adjacency ustrix
of Figure 4.1 (or, shat Is the so"s thing, of Figure 4.2) is

13

column indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
r0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 1 0 0 0 0 0 0 0 0
1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U
d 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0

c 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0

s 6 0 0 0 0 0 0 0 1 1 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 1 0 0 1 0

8 0 0 0 0 0 0 0 0 0 1 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 1 1

11 0 0 0 0 0 0 0 0 0 0 0 0 1 1

12 0 1 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Its zeroth column (i.e. its initial colun) Is the sero columin (i.e.
colum with no mousero entries) because box 0 is a source. Its row 3 (the
fourth of its row) is a ero row because box 3 is a sunk. It ha 20
nonsero entries because there are 20 flows. Its diagonal is zero because
there are no loops in a flow diagram. The matrix C is a purely local
description of the flow. The first objective of this research is to
attain Goal I by producin an integrating operator f capable of
producing something like a three dimensional version of Figure 4.2.
Figure 4.3 is just a stretched-out version of Figure 4.2. The idea is
that assigning each box a different height might make it easier to express
the algorithm f.

It would be desirable to have f act so that

f C a Figure 4.3 .

Nore specifically, we went a simple algorithm for f. Given a square
incidence matrix C (You can, of coure, always write down C from a
flow diagram, so matter bow spaghetti the flow diagram is, or even from
amy camplete verbal description of what is to be dome). we wnt an
algorithm which produces a series of borisontal bses, each box at a
different height, and a series of vertical flows between pairs of boxes as
in Figure 4.3.

Vs also mnt to attain Goal 3. If the flow diagram is planar (i.e.
if Its umderlying graph is imbeddable in the plane) we want a variant of
the f algorithm to draw a plane imbedding in the form of a pictorial
representation without crossovers.

14

The staff of ,LYU Ltd. has never failed to unfold any challenge flow
diagram tabe free the techeical literature (i.e. has not failed to find
as equivalent planar flow diagram without crossovers), which is why it was
led to costruct [(3,3) ZESo=T and K(5) ZRNOlT.

A coajectural explanation for this ostensible absence of nonplanar
flow diagrm prior to the two ZMNBOIT routines is that disciplined
scientific minds toad to think in "Vestern" and "linear" fashions which
are not sufficiently couvoluted to produce nonplanar flow diagrams.
Perhaps met people think like Wirth [1I791, in other words, only not as
capably. They refine routines by breaking tasks down and wind up with
code Which is GOTOless in spirit, even though stylistically defective
i1781 and in need of reworking to make it GOTOless in fact.

Goal 2 my be harder to achieve algorithmically. YLYK Ltd. will
devote som tin to it, but will divert its efforts to other goals, or
will accept only partial attaiment of Goal 2, if extreme difficulties
arise. By partial achievement of Coal 2 we mean an algorithm which
somtimes establishes planarity, sometimes establishes nonplanarity and
soetimes halts without establishing either, but which always halts
within, let us say, a hour.

The fourth Phase I objective is attaining Goal 4. This appears to be
so like Goal 3 that we merely repeat what we have said about Goal 3. Goal
5 will also be met part way (via a routine for suggesting highly - though
perhaps not maximally - parallel implementation of any given algorithm).

At any rate the ability to nove from C to a pictorial rendition of a
flow diagram which Is planar, or which has a maximal umber of parallel
flow (presumably sometimes useful for speedy parallel implementation), or
which ks a minimal umber of parallel flow (presumably sometimes easier
to decompose conceptually into subroutines and, thus, perhaps easier to
understand), would seem to be useful to people building algorithms as well
as people trying to understand existing algorithms. Such problems are
timely, hard [V165; M821 ad can exhibit combinatorial explosion, but it
would be worthwhile to have even close-to-optimal solutions available, and
there are encouraging related ITA82; 041"] results. Consequently YLYK
Ltd. will devote considerable effort to Goal 5. But it will accept
limited success in he sense that an algorithm for producing a highly
parallel (rather than maximally parallel) implementation my be the only
result attained In Phase 1.

Som progres tomrd the attaiment of Goals 6, 7, 8, or 9 is likely
to occur in Phase 1, but only incidentally. No formal work on them is
proposed for Phase I.

5. Phase I work plan.

The first objective in Phase I, oal 1, is straightforward and
virtually cartalq of attainment within 6 months. This is the production
of an algorithm J which takes the adjacency matrix C of a flow diagram as
its input. The output, f C. of f will be two sets. The first set
(called the set of vertices) is a collection of horizontal cells (i.e.
parallelograms lying in planes parallel to the xy plane and having sides
parallel to the x axis and the y axis) at pairwise unequal positive
integer heights (The single s-coordinate common to all points in a single

15

horizontal cell will be called the height of the cell). The second set
(called the set of edges) will be a set of ordered pairs of points of the
form (h,t) - (h[l), h[21] h[31), (t[ll, t[2J, t[31)) where

hil) = t[ll

h[21 t121

and where the head point h of the edge (h,t) lies in one vertex and
the tail point t of the edge (h,t) lies in another vertex. Thus the
edges mount to directed vertical line segments connecting one vertex to
another. A vertex (h,t) must also have the property that the line
segment L((ht)) joining h to t will not intersect any vertex other
than the one containing h and the one containing t.

The structure f C so produced is the most useful standard form of
an imbedding of the flow diagram described by C in real three
dimensional Euclidean space. It consists of horizontal boxes and vertical
flows in a three dimensional analogy to Figure 4.3.

The simplicity and robustness of the available constructive proofs
1W179, pp. 22-231 of the imbeddability of graphs in 3-space, coupled with
the power of the Wagner/Fary [1E71, pp. 84-851 approach to imbedding
simple graphs using straight lines, make success in the first objective
virtually a foregone conclusion. It remains to be seen, of course, how
fast the algorithm is. By all indications it will be a (deterministic)
polynomial time algorithm which can deal with 100 by 100 matrices C for
just a few dollars. One of the reasons for believing that costs will be
low (even if the complexity class of f is worse than P) is that it is
very hard to conceive of a humanly producible flow diagram whose digraph
adjacency matrix is nonsparse 10083, p. 61 once the number of boxes (i.e.
vertices) rises toward the hundreds.

The second objective in Phase I, Goal 2, is more iffy. This
objective Is to produce an algorithm A whichakes the adjacency matrix .o

of a flow diagram as an input. The output AC of A will be 2 if
A can economically prove that C is the adjacency matrix of a planar
digraph, will be 3 if A can economically prove that C is the adjacency
matrix of a nonplanar digraph, and will be 4 if A determines that it
cannot output 2 or 3.

One such algorithm is PRINT "4", of course. The question is to what
extent it is possible to improve on it. There are many ways to recognize
planarity in a graph (the loopless digraph problem is a bit harder). One
of the most promising, from an algorithmic standpoint, is Whitney's
criterion [1HA71, p. 1151, namely the existence of a combinatorial dual.
The nonuniqueness of such a dual is a plus for a designer producing code
aimed at outputting a 2. Recognizing nonplanarity is different. It would
seem desirable to have a means of finding submatrices of C tich look
like the adjacency matrices of snarls. So far the only advantage YLYK
Ltd. can bring to the search is that it knows snarls exist.

The third objective in Phase I is Goal 3. The idea behind it is as
follows. Suppose that the algorithm f exists. Suppose that a flow
diagram whose adjacency matrix is C is known to be planar, i.e. that
some algorithm A outputs AC - 2. (This is a weaker assumption than
that a pretty good algorithm A exists. Some oracle might Just tell us
that this particular C is the C of a planar flow diagram). Produce an
algorithm 11 which takes the triple

16

(C, f C, the fact that there is a A such that AC - 2)

as input, and produces an output

11(C , Ae, the fact that there is a A such that AC - 2)

(which we wll abbreviate as IIC). This output should be a two
dimensional version of fC. It will have vertices which are horizontal
line segments (no two of them at the same height) in the xy plane and
directed vertical edges. There will be no crossovers. It will, in short,
look like Figure 4.3. This is an interesting problem, perhaps solvable in
principle by somebody who has the resources to build a solid model of fc
in Euclidean 3-space and the leisure to examine it from every possible
vantage point therein (this approach seems to entail the use of both
projective and affine geometry) to ascertain whether there was such a
vantage point from which it appeared planar. Such an approach might fall
anywhere between simple linear algebra and sophisticated computer
graphics, but would more likely be the former and would very likely lead
to an algorithm 11 with extremely low computational complexity or else to
an algorithm without provably low complexity but with high probability of
quickly producing an output planar flow diagram.

As noted in Section 5, it is anticipated that Goal 1 (a working
routine for forming fC) and Goal 3 (a working routine for drawing fc
in a plane with no crossovers if C is the adjacency matrix of a digraph
whose underlying graph is planar) will have been attained by the end of
Phase I.

The fourth Phase I objective is Goal 4. This should be the easiest
goal to meet.

As noted in Section 4, the fifth Phase I objective is Goal 5 but YLYK
Ltd. would be content with limited success in regard to one extremal
property, parallelizability. This objective will be sought only after a
working routine for turning C into fA exists. Here no powerful
mathematical tools are known, but several people who will be employed on
the project have begun to acquire working familiarity with what is
involved by working out examples.

6. Related work. Bibliographic citations list.

6a. Scientists who will work on the project.

Bob Blakley, the principal investigator on this SBIR Phase I
proposal, served as a draftsman for the City of Bryan, Texas, in the
summer of 1978. He is an expert scientific programer, having been
employed at various times over the last eight years in software production
and maintenance by research contracts and grants in the Mathematics,
Mechanical Engineering, Statistics, Chemistry, Biochemistry and Biophysics
departments of Tas A&M University, the Geophysical Fluid Dynamics
Laboratory at Princeton University, the University of Michigan Computer
Center, the Vinterhalter Corporation of Ann Arbor, Michigan, as well as
for YLYK Ltd. of Ann Arbor, Michigan. He has had extensive experience In
algebraic scientific software production, some of it in collaboration with
G. R. Blakley. He has a substantial academic background in mathematics,
logic, computer science and natural languages. He is conversant with a
dozen computer languages, several of which are assembly languages, and
with IBM PC software/hardware interface(BIOS). Be was Principal
Investigator on YLYK Ltd. Phase I SBIR Contract F 49620-83-C-0160 with

s-i-

17

A1051 (duration 6 sonths, beginning 30 September 1983).* The research on
the A1091 contract in question dealt with high-speed low-cost ways to get
a message from a sender to a receiver when some channels linking them
become Inoperative.

G. Le Blaklsy, Le D. Dixon and A. M. Hobbs will be employed as
consultants on this work.

Dr. G. Le llakley invented threshold shema, and is a major
contributor to their theory. His interest in linear algebra,
combintorics, and their applications outside matheatics. goes beck
twenty years, and has issued in numerous publications. Re has had 30
years acquaintanceship with computers and has recently completed three
years as Principal Investigator on a National Security Agency grant to do
unclassified research In information theory.

Dr. R. D. Dixon is a computer scientist with doctoral training and
numerous publications in mathematics mid computer science. Rio interest
in linear algebra, combinatorics, and their uses In computer science goes
back twenty years.

Dr. A. Me Hobbs is a graph theorist with extensive experience in
computing. He has some 20 publications.

lob llakley, G. R. Ilakisy, R. D. Dixon and A. Me Hobbs have all
known each other for many years. They comunicate effortlessly with sach
other on technical matters.* See Sections 9 and 11 below for more on these
Individuals.

6b. Bibliographic citations list.

AD82 W. Le Adrion, M. A. Branstad ad J. C. Cbernievsky, Validation,
verification, and testing of computer software, £01 Computing
Surveys, Vol. 14 (1982), pp. 159-192.

BA72 F. T. Daker, Chief progrmmr tam management of production
programaing, IBM Systems Journal, Vol. 11. No. 1, Jan. (1972),
pp. 56-73.

3171 K. lehaad mid G. Chartrand, Introduction to the Theory of
Graph*, Allyn and Bacon, Boston (1971).

1174 R. Behnke. F. Bachmann, K. Fledt and V. $Use, Fundmntals of
Mathematics, Volume 1, MIT Press (1974).

1185 3. A. lesider ad J. T. Butler, Enumeration of stuctured
flowcharts, Journal of the £01, Vol. 32 (1985), pp. 537-548.

IO G. R. Rlakley, IEEE Transactions an Computers, Vol. (198)

D0O" C. Ohs ad G. Jacopini, Flow diegrams, Turing machines md
languages with only two formation rules, Cimmnicatoss of the
£01, Vol. 9 (1966), pp. 366-370.

1076 J. A. Bondy and U. S. 1t. Murty, Graph Theory with Applications,
American Elsevier, New York, and Macmillan, London (1976).

BU74 D. Butterworth, letter to the Editor, Datamation, Vol. 20, No.
3, (19741), p. 158.

C086 D. 1. A. Cohen, Introduction to Computer Theory, John Viley and
Sons, Nsw York (1986).

DA72 0. -J. Dahl, a. W. Dijkstra and C. A. Rt. Boar*, Structured
.Pogrming, Academic Press (1972).

16

D165 1. V. DLjkatra, Progring considered an a human activity,
Proceedings of the IFIP Congress (1965), pp. 213-217.

D168 1. V. Dljktra, 00 TO statement considered harmful,
Communications of the AOl, Vol. 11 (1968). pp. 147-148.

D176 1. V. Dijkstra, A Discipline of Programing. Prentice-.all,
laglewood Cliffs, New Jersey (1976).

D073 J. L Donaldon, Structured prograing, Detonation, Vol. 19,
go. 12 (1973), pp. 52-54.

EL73 K. !lson, Concepts of Progr ing Language. Science Research
Asociateas, Chicago (1973).

G083 0. 1. Golub and C. F. Van Loam. NatrIz Computations, Johs
Ropkime Universlty Press, Baltimore (1963).

RA69 F. larary, Graph Theory. Addisou-Vley, Imading. Ibssacbsette
(1%7).

1082 W. R. Dowden, Validation of scientific progrm. A0 Computing
Surveys, Vol. 14 (1962), pp. 193-227.

R064 1. J. Beover, N. R. Ilow and m. J. Pippeuger, Somding fan-out
in logical networks, Journal of the ACt. Vol. 31 (1964). pp.
13-18.

162 I. &. bat, I11, On the completty of flowchart and loop program
schime and progriamng lnguages, Joural of the A , Vol. 29
(1962), pp. 228-249.

JA75 N. A. Jackson, Priaciplec of Progre Dneigs. Academic Press.
L ad" (1975).

J179 I. V. Jemm ad C. C. Toules, Software lnimeriag.
PretIce-kMal. Uagleoed Cliffs. Nor Jersey (1979).

181 1. W. Jensen, Structured programing. 123 Conputer Magasine.
Vol. 14, 1b. 3, Narch (1961), pp. 31-46.

CA74 R. A. Karp. Letter to the Bditor. Dstasation. Vol. 20. 1b. 3.
(1974), p. 154.

1K78 B. W. brnim and P. J. Plumper. T- Igmots of Prograning
Style. Second lditiem, Nem-Rill. BMW York (1978).

1174 D. K. Kumtk, Structured prograig with statement. ACH
Cemting Surveys. Vol. 6 (1974). pp. 261-301.

LA66 S. Lng. Limer Alebra. Aidiseefereley. ading. .seeclusaetts
(1966).

N"db7 S. McLean and G. Srkhoff, Algebra. 3.chlm. New York (1967).

M77 T. 1. Nnie. A Course in Hatkentical Logic. Spriuger-Verlsg,
ew York (1977).

M172 1. D. Hils. Mthematical fomwatioma for structured
prograoing. IBM Technical Import PlC 72-4)12, Interntional
D"imse. Machlume Cor.. Gaithersburg, Nrylead. Pebrurv
(1972).

176 J. 0. Hook. Mathematical Logic. Sprimger-Verlag. N York
(1976).

i -i " . ."0*'

19

P173 V. U. Paterson, T. Kasami, and N. Tokura, On the capabilities of
while, repeat, and exit statements, Communications of the ACM,
V 1. 16 (1973), pp. 503-512.

QUa4 N. J. Quinn and N. Des, Parallel graph algorithms, ACM Computing
Surveys, Vol. 16 (1984), pp. 319-348.

1064 G. -C. Rota, On the foundations of combinatorial theory, I. The
Theory of Mbius functions, Zeitschrift fUr
Vahrocheinlichkeitstheorie und Verwandte Gebiete, Vol. 2 (1964),
pp. 340-368.

T32 K. Takamisawa, T. Nishizeki, and N. Saito, Linear-time
computability of combinatorial problems on series-parallel
graph*. Journal of the ACM, Vol. 29 (1982), pp. 623-641.

VIS5 U. Vishkin and A. Wigderson, Trade-offs between depth and width
in parallel computation, SIAK Journal on Computing, Vol. 14
(1965), pp. 303-312.

Wi66 N. Wirth and C. A. 1. Roar., A contribution to the development
of ALGOL, Communications of the ACK, Vol. 9 (1966), pp. 413-432.

U171 N. Wirth, Program development by stepwise refinement,
Communications of the ACK, Vol. 14 (1971), pp. 221-227.

V174 N. Wirth, On the composition of well-structured programs, ACM
Computing Surveys, Vol. 6 (1974), pp. 247-259.

V179 R. J. Wilson, Introduction to Graph Theory, Second Edition,
Academic Press, New York (1979).

V0S5 S. Wolfram, response to a question asked at Crypto '85, Santa
Barbara, California, August (1985).

7. Relationship with future research, or research and development.
7a. Anticipated results of Phase I effort if the project is

successful.
Suppose. first, that the Phase I work succeeds in attaining Goals

1,2,3 ad 4 in a completely general and satisfactory way. Consider what
will thbs be available to anybody with a well-deterined program
specificatiom which has already progressed to the stage where, for each
Individual procees, it is known %hich processes it immediately depends on,
end which processes immdiately depend on it (i.e. to anybody with
complete local information C). Such an individual will have available a
cheap, fast computer program which will produce a complete global picture
IC of the structure of the program. In the planar case this means there
will be a flat drawing fC with horizontal boxes (within each box will be
written either am operation or an interrogation) and vertical arrows
(describing cotrol flows from box to box), and this drawing will have no
crossovers. See Figure 4.3 for an example.

In the souplanar case the cheap, fast program will produce a proof of
nomplamarity. It will also produce two other structures, a solid one and
a flat one. The solid structure will resemble the skeleton of a
skyscraper under construction. It will consist of horizontal "floors"
(i.e. borisontl rectangles which play the same role the boxes did in the
flat drawing above, meaning that each "floor" has an operation or an
interrog tion written on it) and vertical "girders" (i.e. vertical arrows)
describing control flows between "floors'. A "girder" connecting
"flor A" to "floor a" will never touch any other "floor".

' ' ; i i i I I I I |~~t lS~f | .| a a -. " --". r,''"'" l " . - "- - - -

20

The flat structure in this nonplanar case will be an arrangement of
horizontal boxes and vertical flows, just as in the planar case above,
with the following difference. There will be at least one place where a
crossover occurs, i.e. where a vertical flow must tunnel under a
horizontal box. See Figures 3.1 and 3.2 for examples. The number of such
crossovers in the flat structure will be minimal.

Such representations are evidently such different from, and
manifestly superior to, the sort of spaghetti that one sees in virtually
any flow diagram of a complicated program in the literature to date.

It is in the nature of things that none of these pictorial
representations of flow diagrams, whether planar or nonplanar, whether
solid or flat, can be unique. This is a plus from two viewpoints. First,
it will make it easier to build a fast algorithm for producing such a
pictorial representation. Second, it will make these pictorial
representations (all of which go by the name fC. Even though this is an
abuse of language, it is in the spirit of calculus since indefinite
integration does not produce a unique result) manipulable. Here is where
the open-ended Goal 5 comes in. People will want to take some fC and
tweak it to produce more information about the algorithms underlying C
or about how to implement those algorithms. It would clearly be desirable
to modify an fC drawing (or skyscraper skeleton) so as to be able to set
up an extremally parallel (hence fast) implementation. And YLYK Ltd. will
attempt to provide a routine for this purpose. But there will obviously
be about as many desired types of tweaks as there are tweakers. So there
will be literally no end to the sort of thing one can do toward attaining
Goal 5.

7b. Significance of Phase I effort in providing a foundation for
Phase II.

Phase II should be devoted to completing work on Goals 3 and 4, in
the unlikely event anything remains to be done, as well as to completing
work on Goal 2. It should also attain more subgoals associated with the
open-ended collection of desired routines which make up Goal 5.

Goals 6, 7 and 9 are its proper areas of investigation. Goal 6,
learning about routines containing snarls, is very extensive and very
exciting. In a sense Goal 7, working out efficient batching, is merely a
part of Goal 6. But batching is so promising it deserves a separate
mention.

In pipelining it is often possible to push data through some crucial
node at a rate of one item per clock-tick forever so that various items
are at various stages of completion. This seems unlikely in snarls. Look
at bew data moves through K(3,3) ZENSORT in Figure 3.1, for example. An
input such as (3.1,2) goes through box 3150, and is transformed to
(Z.3,I), goes again through box 3150, is transformed to (2,1,3), goes
qgn through box 3150, is transformed to (3,2,1). goes again through box
1150. is traneformed to (1,2,3), and exits. This means that it is
impesible to put an unending input data stream into box 3150, because at
-etata later cimes partially processed data mst reenter it.

Set 1 takes a while before a given item reenters box 3150. So it
iekta be possible to put a few more operations (including NOP operations)

late U(I.)) ZEZOIT in such a way as to force a sort of "uniform cycling
teme ' m the algorithm. In this way one could then feed a batch of T

!"eto to, watch this batch move through, then feed another batch through,
- -so . Tisto to at is oet by the word "batching". In this way an

i I !0P - , " . - ,

1

actual slowdown of parts .1 90.3) U t wula Is"d to a YIeld euoo~
of the alsorith, of a viola.

It looks as tboug batehiag If,* retbar matrelly. mre mpg goae to
snarls them pipeltming In which arbitrarily left des crer we fed is.

Coal 9. a *3-dimemsioes.I lawuess based as amboued selletar
automata is speculative. If it is attaimo, It is we likely to. be does,
with just 4 or S mes-years of effort. Out it would beaa true realiaie
of a worthwhile goal of structured programming, the complete and pertfectl y
general removal of the ineed for QM.

Coal & can be viewed as a open-ended blue sky son of Investigation,
of the relationship between biolegy end the theory of algotithms. it will
probably not be attacked even in Phase 11. The reso is that its hg
intrinsic interest La not matched by obvious immediate utility.

a. Potential post applications.

Ba. Potential commercial application of proposnd project.

As noted in various places the research Gould, InL the best possible
outcome of Phases I and 11:
1. produce a naw, completely general GOles 3dmmso aIsmgmge";

2. massively modify and Improve (perhaps revolutionise) our approach to
software design;

3. provide a new and very different class of routines (theee with
snarls) for our study and use;

4. produce a major enhancement in our ability to make use of parallel
computation.

8b. Potential utility to the Federal Covers t of proposed project.

The advantages cited in Subsection Ua are all of obvious us to the
Federal government.* Since we are proposing general-purpose research It to
hard to see which of Its results will be of more value to industry and
which of more value to governnt.

9. Key personnel.

YLYK Ltd. was Incorporated in Delaware on 4 Jun 1979. it is
currently headquartered In Ann Arbor, Michigan. Its hpleye
Identification Number io 22 2260W6.

Bob Blakley, born 13 July 1960 in Vashingtoe D.C., to a cit ifee of
the U.S.A. and a 1982 honors graduate of Princeton Vaiversity. Me married
Karen Hejtmancik of College Station, Texas, an 7 August 1962. In 1954 be
received an M.S. degree In computer and communications sciences from the
University of Michigan. Bs Is currently teaching a course on assembly
language and completing his doctoral dissertation in cnopter and
comunications sciences at the University of Michigan. Be is coauthor of
three papers on cryptography and information theory in Cryptologia, Volum
2 (1978), pp. 305-321. Volume 3 (1979), pp. 29-42. ad Voitm 3 (1979),
pp. 105-118. for 6 months, beginning on 30 September 1963, hewa
principal investigator on a ILYK Ltd. SB11 Phase I contract with APOR
(High-speed low-cost ways to get messages from a sender to a receiver when
some channels linking them become inoperative, Contract No.
F 49620-83-C-0160). Be is president of fLYK Ltd.. ,end will be principal

22

iin.U.' the propoes rmesk. Us Socsial Security Ower s.
A.*-3. les seton 6 dmwet or s informtioen seeest hUs.

2W 3-re. failites owtlahl. to UffK Ltd.* at Ass Arbor are
udeqat t ib task ag heed. Tbary pevie the princi pal Inesatigator

all a awk are and amosesry library and drattag facilities. other
peeeem be eco isite there, or else asigned datiee to be

perfsind an Char amprmies to esetaot faahaS. It is easy to
parbme aapuertim as sede s5 Ain Arbor an Detroit.

6. C SLehly MP.D.. 11athomates, Ustworsity of Maryland, 19SO) did
p-seideetel. wort at Oewu&Ll and rvard. *M heaa been an the mthmat ics
deparmt faculty of the University of Illinois (hrea).* SMI at

Sif," O1. losd es AmUniJvesity (Wer. he wa depertment hand for my
peser. aned wherse be to rvetLy a profaesr). go Is. author or coauthor
of mre the 30 papers is maeatic a md its applicatiLons. my of thee
is hUmer asbra. splas vat table a mthematical aes ot cempater
sierne. Me to emedirer (with David Chae.) of Advauce@ is Crypteogy,
P. woedtp at cumT 04. Vole1 1%, LeIcture noes in computer Science.
Spriager-ferla. orite (1965).

IL S. Dime MP.D.. Nosthemti. Ohio, State University, 1942) served
onts imathebmatics department fealty at in Deivarsity af llinois bef ore
leving to ersmitsm and hend the matematics departmt at Wright stats
stiverelty Is M96. Im eubssquently helped to eirasias, mnd became head

ofth im uter mcenace deprmet at UrtW State, whats he is am
protosesr. Is he. domem of publicatSams is inear algebra ~an anays.

esatorie and modsr Cheery, n is computor sciaee.
A. N. Sabha (fh.b., Cmiatartes, Vat..rlse, 1971) is a graph

theorist sod a student of W. T. Tutte. ft s the author of mre thes a
dame papers in graph theery. Usa professiona career hoa hesm largely at
the Nat ional Swame of Standards and in the mathmt Ics departamnt of
To&" AM Univesity. wskews he is associate profssor.

See Section 6 shess for mrs on thes* onsultants.

12. Prior. eurrest, or pending support.

11a 551. proposal, or other sort of proposal to the Federal Gveret
smilar to this proposal * bee bees submitted or to uder cosideration.
If a proposal similar to CbS..se s to sbeqenly produced and submitted
to my agecy of the Federal Govermnt. * LU Ltd. will promptly inform
the AFOM Progrm Mneagement Off ice.

23

1). ae pops@"

COST IREAKDOW

VM SMALL SUSS INWOATION RESLARCH FROMRM (SBIt) PHASE I

C1. Offeror YLYK Ltd.

C2. offeror's bow office address 2440 Stone
Ann Arbor, Michigan 48105

C3. Location wbere work
will be performd Ann Arbor, Michigan

C4, Title of proposed effort Reduction of flow diagrams to
unfolded form modulo snarls

CS. Topic number and topic title A1 86-12

from DOD solicitation brochure Research in Mathematics

C6. Total dollar amount of the proposal $ 49,973

C7,* Direct material costs $ 0

CS. Material overhead $ 0

C9. Direct labor

ga. Principal investigator:
Bob Ilakisy, President, TLYU Ltd.
(rate: $24 par hour) 1040 hours $ 24,960

9b. Ancillary vorkers:
Technical typing/secretarial
Dial ting/progrming
(average rate: $9 per hour)
520 hours $ 4,680

9e. Retimated total direct labor $ 29,640

CIO. Labor overhead: 242 of direct labor

Taxes (including FICA, IOTA, MISC),
insurance, Bployee benefits,
Accounting, Comunications,
Facilities, Utilities $ 7,114

C11. Special testing $ 0

C12. Special equipment $ 0

24

C13. Travel:

13a. Air transportation;
5 round trips between points In

the U. S. at $400 per trip $ 2,000

13b. Automobile rental;
10 days at $40 per day $ 400

13. Per diem (lodging and meals);
10 days at $70 per day $ 700

13d. Conference and seminar
registration fees $ 500

13e. Estimated total travel $ 3,600

C14. Consultants:

14a. G. R. Blakley,
(rate: $27 per hour) 96 hours $ 2,592

14b. R. D. Dixon,
(rate: $27 per hour) 72 hours $ 1,944

14c. A. M. Hobbs,
(rate: $19 per hour) 32 hours $ 608

14d. Estimated total consultants $ 5,144

C15. Other direct costs:

Cost of renting computer time to carry
out necessary computations $ 1,000

C16. General and administrative expense:

4 I of total direct costs
incurred in item C9, C13,
C14 and C15 $ 1,575

C17. Royalties $ 0

CIS. Fee or profit $ 1,900

C19. Estimate of cost, and fee or profit:

19a. Direct labor $ 29,640

19b. Labor overhead $ 7,114

19c. Travel $ 3,600

19d. Consultants $ 5,144

19e. Other direct costs $ 1,000

19f. General and administrative expense $ 1,575

19S. Fee or profit $ 1,900

19h. Total $ 49,973

C20. Sigmature:

C21. Offeror's answers to three questioIIIIIs.

21.. Us any executive agency of the Unaited States governmt performed
any review of TLYK Ltd.'s accounts or records In connection with any
other goverent prim contract or subcontract within the past twelve
mouths? no.

21b. WLl ILYK Ltd. require the we of my government property in the
performance of this proposal? No.

21c. Does TLYK Ltd. require govermuIIIIet contract financing to perform this
proposal contract? Teo. Advanced Payments. It is proposed that
$15,000 be paid on Day 1. This will take care of startup costs, early
consultant fees and travel, and certain direct labor expenses. It is,
further, proposed that $10,000 be paid on Day 41, that $10,000 be paid
on Day 81, that $10,000 b@ paid on Day 121, and that $4,973 be paid on
receipt of the final rep

CU2. Type of contract proposed: Firm-fixed price.

16.*0 Bibli ography

(A063 Aha, G., Actors: A Model Of Concurrent Coptin
and Distributed Systems, MIT Press, 1956.

CA1174] Aho, A.V., Kopcroft, 3.Z., and Ullman, 3.D., The
Design and Analysis of Computer Algorithms, Reading, Mass.:
Addison-Wesley, 1974.

[35853 Bender, Z.A., anid 3.T. Butler, "snumeration of
Structured Flowcharts", JACK, 32:3(Ju1. 1965), 537-48.

E3C711 Behzod, M., and G. Chartrand, Introduction to the
Theory of Graphs, Boston: Allyn and Bacon, 1971.

(33661 Bohm, C.D., and G. Jacopini, "Flow Diagrams, Turing
Machines, and Langua es With Only Two Formation Rules",
CAC4, 9:5(may 1966), 3!6-71.

(30791 Bollobas, B., Graph Theory: An Introductory Course,
New York: Springer, 1979.

[DM763 Bondy, 3.A., and U.S.R. Murty, Graph Theory vith
Applications, New York: Elsevier (North-Holland), 1976.

C3L76] Booth, K.S., and G.S. Luoker, *Testing for the
Consecutive Ones Property, Interval Graphs, and Graph
Planarity Using PQ-treo Algorithms", 3. Camp. Sys. Sci.,
13(1976), 335-9

(CNS5J Chiba, N., T. Nishizeki, S. Abe, and T. Ozawa, "A
Linear Algorithm for Embedding Planar Graphs Using
PQ-Treesw, 3. Comp. and Sys. Sci., 30(1985), 54-76.

(DZ763 Doo, N., 'Note on Hopcroft and Tarjan Planarity
Algorithm", JACK, 23(1976), 74-5.

[DH833 Duchet, P., Y. Hamidoune, M. Las Vergnas, and H.
Neynel,"Representing A Planar Graph by Vertical Lines
Jo ingDifferent Levels', Discrete Mathematics 46(1983),

319-21.

[DI683 Dijkstra, 3.D., "Go To Statement Considered Harmful"
(letter), CACl, 11:3(Mar. 1968), 147-8.

(3V793 Even, S., Graph Algorithms, Rockville, MD: Computer
Science Press, 1979.

[2T761 Rven, S., and Tarjan, Rotor "Computing an
st-numbering", Th. Comp. Sci., 2(1976), 339-44.

[7A48] Vary, I., 'On Straight-Line Representation of Planar
Graphs*, Acts. Sci. Math. Szeged, 11(1948), 229-33.

[FR8l] do Fraysseix, H., and P. Rosonstiehl, Seminaire du
Lw'idi, Paris, Dec. 1981. (cited in (DM83]).

(GW791 Garay, X.R., and D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness,
San Francisco: W.H. Freeman, 1979.

[0185] Gibbons, A., Algorithmic Graph Theory, London:
Cambridge, 1965.

CGRS3J Goldberg, A., and D. Robson, Smalitalk-SO: The
Language and its Implementation, Reading, Mass.:
Addison-Wesley, 1983.

[3065] Hoare, C.A.R., Communicating Sequential Processes,
Englewood Cliffs, NJ: Prentice-Hall, 1985.

[HT74] Hopcroft, 3.3., and R.E. Tarjan, 'Efficient Planarity
Testing', JAC1M, 21(1974), 549-68.

[i4E84] Mehlhorn, K., Graph Algorithms and NP-Completeness,
Nov York: Springer, 1984.

[MU751 Munkres, J.R., Topology: a first course, Englewood
Cliffs, N.J.: Prentice-Mall, 1975.

[LE67 Lempel, A., S. Even., and I. Cederbaum, "An Algorithm
for Planarity Testing of Graphs", Theory of Graphs,
international Symposium, Rome, July 1966, P. Rosenstiehl,
ed., Gordon and Breach, N.Y., 1967, 215-32.

CRES5] Raisig, W., Petri Nets: An Introduction, Berlin:
Springer, 1985.

(RN77] Rhoingold, E.M., Nievergelt, 3., and Deo, N.,
Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, Englevood Cliffs, NJ, 1977.

ERU871 Rubin, F., -'GOTO Considered Harmful' Considered
Harmful', CAC4 30:3(Mar. 1987), 195-6.

[SA85J Sharp, J.A., Data Flow Computing, Chichester, West

Sussex, Rngland: Ellis Horvood, 1985.

ISMS?] Sherlekar, D., Thesis, U. of Maryland, in
preparation.

CA71] Tarian, R., "An Efficient Planarity Algorithm",
Thesis, Stanford U., 1971.

CTAS7J TarJan, R., "Algorithm Design", CACM 30:3(Mar. 1987),
205-12.

ECwA4J Ullman, J.D., Computational Aspects of VLSI, Computer
Science Press, Rockville, MD~, 1984.

1W55 Wedge, W.W., and E.A. Ashcroft, Lucid: The Dataf low
Programming Language, London: Academic Press, 1985.

CWA36] Wagner, K., 'lemerkungen zum Vierfarbenproblem',
Jber. Deutsch. Math. Verein., 46(1936), 21-2.

JW179] Wilson, R.3., Introduction to Graph Theory, 2nd Ed.,
Nov York, Academic Press, 1979.

/

